Further Programming
forthe

lan Stewart and
Robin jones

CABS Locy pUGENTA
RUE ViDEQ 4

turther
Programming

forthe
IX SPECTRUM

1an Slewart

Wathemaltics Inslitute, University of Warwick

Robin Jones

Computer Unit, South Kent College of fechnology

Conlenls

O 00 A N s N e

Preface

Map of the World

Block Filling

User-defined Functions
Control Characters

Display Techniques

System Variables

Attribute and Display Files
Psychospectrology

Files

Statistics made Simple
Improving the Display
Line Renumbering
Polygons

Cryptography and Cryptanalysis
Changing the Character Set
Crashproof Curve-plotting
Data Management Systems
Star Charts

Appendix A: The Cassette File System—

A Reference Description of cfs

Appendix B: Automatic Cassette Control
Appendix C: A User Guide to SDM—

The Spectrum Data Manager

Appendix D: Spectrum Data Manager—Program Listing
Appendix E: Make your own Load/Save Switch

16
20
25
32
41
45
51

77
81
86
91
97
101
113
130

142
149

150
154
161

Preface

You own a Sinclair ZX Spectrum and you feel pretty confident about usingit. You know
what the keys do and you can string twenty or thirty lines of BASIC together and make
them work. You’ve worked your way through the Manual and an introductory book.
You've typed in dozens of programs from the magazines and discovered that the shorter
ones all do the same thing and the longer ones, if they haven’t got errors all over them,
take hours and hours of careful work—and for a mere five pounds you can buy a cassette
which produces more impressive results. Which would be fine except you don’t want to
keep spending five pounds to buy other people’s software—you want to produce your
own.

So what next?

You've still got some way to go before you can write Machine Code arcade-quality
games or programs to display the Night Sky at any time between 4000 BC and 6000 AD;;
and while this book may start you along that road, it certainly won’t take you all the way.
What it will do is help you to expand both your own capabilities and those of the
machine.

There are three main directions to explore.

One might be described as “Theory of Computation”: how to develop techniques for
improving your programs. As far as this book goes, we’ve taken a fairly practical view of
what constitutes theory: that is, we’ve concentrated on specific features of the Spectrum,
such as its colour facilities and its graphics, and dug a little deeper into the machine.
You’ll find out more about control characters, user-defined functions, user-defined
graphics, the systems variables, and the display and attributes files—and how to make
good use of them.

Second is “Machine Enhancement”. By writing suitable utility programs you can
equip your Spectrum with facilities that the bare machine does not possess. Quick
line-renumbering of BASIC programs (our routine lets you choose a block out of a
program and renumber that on its own—great for tidying up subroutines). Plotting
graphs without having to worry about points going off-screen. Automatic block-fill of
line-drawings. An effective system for handling large quantities of data held on cassette
tape as files, which could be used as the basis of a practical record-keeping system for
business or the home. In easy stages we take you from a simple Cassette File System to a
Data Management System.

Third . . . well, have you noticed that whenever you ask a computer enthusiast “very
nice, but what can you do with it?”” he tends to change the subject? It’s as if the major aim
of computing is to do more computing. Art for art’s sake, Computers as a Way Of Life.
But wouldn’t it be nice to actually use the computer to do something else? You’ll find
some suggestions here: maps, star charts, psychological experiments, simple statistics,
cryptography and cryptanalysis, symbol manipulation.

Two areas we don’t go into here are Machine Code and “pure” theory—topics like
data structures and structured programming. We deal with those elsewhere, in Machine
Code and Better Basic and in Spectrum Machine Code.

Our primary objective is not to produce highly polished “oven-ready” programs. The
main emphasis is on the painful but satisfying process of developing an initial idea into a
program that works. Instead of just presenting the final result, we sometimes describe
routines that are then modified, rewritten, revised, or scrapped entirely and replaced.
After all, that’s how any non-trivial program gets written, and it’s misleading to pretend
otherwise. We’re not trying to give you the impression that writing programs can or
should be painless and easy. The important point is that everybody makes mistakes, so
there’s no reason to lose heart when you do. The trick is to recognize the errors and to
put them right. Of course, any methods that help cut down the chances of making
mistakes are well worth having.

Additionally, however, some of the generally applicable utility routines are also listed
separately in appendices, so that it’s not necessary to wade through the descriptions of
their construction to be able to use them. If all you want to do is copy the listing and run
the program, you can do it.

Asin all our books, we’ve tried to keep the explanations clear and simple. This book is
not a rigidly structured course: it’s designed for you to dip in at random. Some chapters
do depend on earlier ones to some extent, but it’s always obvious when this is the case. So
start by thumbing through to see which items have a particular appeal to your own tastes,
and have a go at those first. You’ll find them very instructive.

Fun, too.

So far, we’ve referred to ourselves as ‘‘we’’—but as in
Easy Programming we found this didn’t always work out
later. So from now on, we’ll refer to ourselves in the
singular, as ‘‘I”’. Whenever we say ‘‘we’’, we’ll mean *‘I
and the reader’’. It may sound a silly idea, but it’s
actually more informative that way.

I wish she'd use a calculator
like everybody else

The more work you’re prepared to

put in, the more your Spectrum can be trained
to perform. Spend a couple of hours, and
you can havea . . .

1 Map of the World

That’s one possibility. The same technique will let you draw, and SAVE, hi-res line
drawings such as pictures of Isaac Newton or Olivia Newton-John, or Martian land-
scapes for use in Space Inveiglers programs.

It’s easy; but it takes time. Here’s a picture of a Spectrum World Map, just to convince
you that the results will amply justify the time spent.

i
Figure 1.1 An outline map of the world, produced on a Spectrum.

The hard way to get this into the machine is to pore over grids of latitude and longitude,
copying out coordinates, and feeding them into a drawing routine.
The way I actually did it is crude, but effective.

1. Cut a piece of transparent plastic—such as part of a polythene bag—to the size of
your TV screen.

2. Mark on it an outline of the central area of the Spectrum display—the part you can
PRINT or PLOT to. The easy way to find this is to type BORDER .

3. Find a map of the world the right size to fit into this.

4. Trace it on to the polythene using a felt-tipped pen. A fairly crude image will do.

5. Let the ink dry, and being careful not to rub it off, stick the map to the front of the

TV, lining it up with the central area, using sticky tape.

That’s the “hardware” requirement for this method. Now for the software . . .

SKETCHPAD

6. Type in a Sketchpad program that lets you control a moving pixel on the screen,
from the keyboard, so that it either PLOTs or moves. Some means of erasing
mistakes is worth having too. Here’s one that will do the job: you can of course make
it more sophisticated if you feel like it.

10 LETx=0:LETy=175

20 OVER1

30 LETflag=0

40 INPUTdS$

50 LETx0=x:LETyd=y

60 IF CODE d$ <60 THEN GO TO 100

70 IFd$ = “m” THEN LET flag = 0

8) IFd$ = “p” THEN LET flag = 1

% GOTO40
100 REM Keyboard response
110 GO SUB 10 * CODE d$ — 299
120 IF flag = @ THEN PLOT x0, y0
130 PLOTx, y: GO TO 49
20 LETx=x+1:LETy=y+ 1: RETURN
210 LETx=x+1:LETy=y— 1: RETURN
220 LETx=x—1:LETy=y— 1: RETURN
23) LETx=x-1:LETy=y+ 1: RETURN
249 LETx=x— 1: RETURN
250 LETy=y— 1: RETURN
260 LETy=y+ 1: RETURN
270 LETx=x+ 1: RETURN

7. Using the keyboard controls (as explained in detail below) move the pixel to a point
underneath the traced lines, then trace along the lines plotting as you go, building up

the outline of the continents. When you’ve gone right round one continent, move
across to the next, then start plotting again.

See, it really is easy. But the results can be magnificent, if you take the time and
trouble to be careful.

USING SKETCHPAD

The program can be in one of two “‘modes’”:

m: MOVE the pixel to a new position;
p: PLOT the current position as you move to it.
It starts in ““m”. At any stage you can change the modes by typing in the symbol “p” or

€699

m .

The moves are controlled by keys 1-8, as follows:

+ 7 1
5 * 8
3 6 2

The pixel moves from its current position (*) one place up, down, sideways, or
diagonally, according to the numbers. (The order may look odd: the idea is that the
“arrow” keys 5-8 work as usual, and the “diagonal” moves 1-4 start at 1 o’clock and
move clockwise.)

The program as it stands requires you to ENTER each number or mode symbol. You
can use INKEY$ if you prefer; but this way there’s a chance to check you’ve hit the right
key before doing any damage.

Experiment with the moves. Because of the OVER 1 command, if you PLOT twice in
the same place, the pixel blanks out. This lets you erase mistakes. However, you should
bear two things in mind:

1. To move on to a new region, make one move away from your finished curve (in a
direction that won’t run into it) before changing to mode “m”.

2. On arrival at the new piece of curve, do not press “p” until your pixel is exactly
aligned with it.

If you make mistakes in choosing modes, you tend to get isolated pixels sitting on the
screen. To get rid of these, go into mode “m”’; move until you hit them (and obliterate
them); go into mode “p”’; move one space; go back to mode “m”. Try it.

Don’t expect a polished result in ten minutes.

SAVEIT

Once you're happy, SAVE the map on tape: you won’t need to spend two hours glued to
the screen ever again. Just STOP the Sketchpad program; then key in as a direct
command:

SAVE “map” SCREEN$
To LOAD it back in, go through the usual routine and use
LOAD “map” SCREEN$

Some of the later chapters of this book assume that you’ve drawn a map (it can be a lot
simpler than the one in my photo) and saved it on tape. So get cracking!

Sometimes the main problem in writing
a program is deciding just what it is

that the machine hasto do . . . asin this
graphics utility program that shades in
regions of the screen—subject to a few
clauses in the fine print.

2 Block Filling

The original idea was: “Wouldn't it be nice to have a World Map screen display in which
the land areas were blacked in?”” And the immediate thought was “Using the Sketchpad
program, it’ll take weeks!” So of course the idea was to get the Spectrum to do all the
work.

It sounds easy, at first. And in simple cases, it is. But you can’t tell the Spectrum “Find
the closed curves and block in the inside”, because it doesn’t know what a closed curve is,
nor does it have any Inside Knowledge. Nor, indeed, does that approach look workable
on the computational level.

Let’s start with an easy case, and work up to the map in stages. The simplest task is to
fill in a single closed region, such as a circle or a polygon. Here’s a working title:

POLYFILLER

Suppose we have a single polygon drawn on the screen. Ignore practicalities for the
moment: consider the theoretical question ‘“What steps must the computer carry out in
order to fill the outline in?”

The answer’s easy:

1. For a given horizontal row, find the left-hand point of the polygon by searching
along from the left.

2. Find the right-hand end by searching from the right.

3. Join them up by a horizontal line.

4. Repeat for each row.

The way to see if a point has been PLOTted is to use the function POINT (Easy
Programming*, page 36). The value of POINT (x, y) is 1 if (x, y) has been PLOTted, @ if
not. So the program we want is this (where I’'m using an italic / to distinguish from the
numeral 1):

10 FORy=0TO175

20 LETxI=0

39 IF POINT (x/,y) = 1 THEN GO TO 60
40 LETxI=xI+1

50 IFxI< =255THENGOTO 30

60 LET xr = 255

70 IF POINT (xr, y) = 1 THEN GO TO 10
8) LETxr=xr—1

* Easy Programming for the ZX Spectrum by Ian Stewart and Robin Jones, Shiva.

99 IF xr > = @ THEN GO TO 70
100 IF x/ > =256 THEN GO TO 120
110 PLOT x/,y: DRAW xr — x/, 0
120 NEXTy

For a test, feed this in; then enter by direct command:
CIRCLE 127, 87, 87
(say) and then
GOTO 10

(not RUN, which erases the screen!).

BEFORE DURING

Figure 2.1 On easy shapes, shading from the leftmost point to the rightmost will work.

It’s slow, to be sure (any shade-in routine is going to be, the amount of computation is
bound to be lengthy because there are 45,056 points on the screen to worry about) but it
works.

If you combine it with the polygon-drawing routine in Chapter 13 so that it first draws a
single polygon, then shades it in, you’ll find it continues to work.

THE SNAGS

However, it fails dismally when there are several regions that need shading (and indesd
in other cases too). Try:

CIRCLE 50, 50, 49: CIRCLE 169, 50, 49

GOTO 10
That’s not what’s intended, is it?

What it’s doing is finding the left-hand point of one circle, then the right-hand point of
the other, and joining those. One way out is to try to work out which closed curve is
which, but that’s messy and long. And, in any case, we’ve still got problems even if
there’s only one curve. Try this:

PLOT 100, 5¢: DRAW 50, —50: DRAW —50, 104:
DRAW —50, —10¢: DRAW 50, 50:
GOTO 19

It’s a single closed polygon, shaped a bit like an arrowhead; and the program shades in
too much.

The reason here is that certain horizontal lines meet the shape in more than just two
points. For example, a line like the one in Figure 2.2 will meet it in four points. And we
only want to shade between the 1st and 2nd; and the 3rd and 4th: not between the 2nd
and 3rd.

Figure 2.2 On more complicated shapes, it won’t!

Which suggests we do this:

1. Track along the row looking for points on the curve, and list them all.

2. Draw from the 1st to the 2nd, the 3rd to the 4th, . . . and in general from the
odd-numbered ones (2 * i + 1) to the even-numbered ones (2 * i + 2) asi runs from 1
to whatever it is.

If you think this will do the trick, try writing a program to implement it. Then test it out
on the arrowhead shape above.

Whoops.

It goes wrong in the first line. There are only two points here; but you don’t want to
shade between them, because each is the tip of a bit of polygon that juts out, and
between them is a “bay”.

By drawing on bits of paper, you should be able to convince yourself that apart from
this “tip of the horn” problem, the idea would work. For instance, on the shape shown in
Figure 2.3 it shades correctly on rows A and B, but not on C or D which meet tips. Notice
it works even though there are several closed curves drawn.

So now the problem is: how to recognize a tip?

Figure 2.3 Shading between odd and even intersections will do the trick, except at the tip of a
peninsula, as in lines C and D.

Obviously the characteristic feature of a tip is that the curve does not actually cross the
horizontal line. It enters it from one side; possibly runs along it for a while; but then
leaves on the same side it entered. Compare the two cases shown in Figure 2.4.

7,
7
// ////%/ // CROSSES

4

Row

l
\
NN

%

A,
//7///

pal

G ek

A\

AN

\

Figure 2.4 To locate tips of peninsulae, see if the line crosses the row or not.

10

So what we seem to need is a routine to see whether the curve crosses the row or not;
and if it doesn’t we ignore it. In order to see if it crosses, we also need to be able to
recognize the part that runs along the row we’re interested in. Then we look at the pixels
surrounding the two ends, and see whether they are suitably filled in (see Figure 2.5).

NN
NN\

Row

. B, //////é % //V/A CROSSES
%454

Down

Figure 2.5 Detection of crossings by searching two 3 X 3 squares of pixels.

In fact we’re still being a little naive; but we’ve got a workable idea, and it leads to the
following program.

SUPERFILLER

10 LET track = 1000
20 LET test = 2000
30 LET list = 3000
49 LET shade = 4000
50 DIM a(20)
60 DIM b(20)
200 FORy=1TO 174
205 LETq=0
210 LETx=1
220 IF x > = 255 THEN GO TO 409
230 IF POINT (x,y) = ®THEN LET x = x + 1: GO TO 220
240 LET x/ = x: GO SUB track
250 GO SUB test
260 LETx=xr+ 1: GOTO 220
400 GO SUB shade
500 NEXTYy
1000 REM track
1010 LETc=0
120 IF x/ + ¢ > = 255 THEN RETURN
1030 IF POINT (x! + ¢, y) = 8 THEN GO TO 1069
1040 LETc=c+ 1: GOTO 1020
1060 LETxr=xl+c—1
1079 RETURN

2000 REM test
2005 LETU=0:LETlu=0:LETt/=0:LETru=20
2010 FORe=-1TO1
2020 IFPOINT (x/ +e,y —1)=1THENLET /=1
2030 IFPOINT (x/ +e,y +1)=1THENLETu =1
2040 IFPOINT (xr +e,y—1)=1THENLETr/ =1
2050 IFPOINT (xr+e,y +1)=1THENLETru=1
2060 NEXTe
20790 IFU+rl=0ORu+ ru =0 THEN RETURN
2080 GO SUB list
2099 RETURN
3000 REM list
30190 LETq=gq+ 1:LET a(q) = xr
3020 RETURN
4000 REM shade
4010 IFy<=1THEN RETURN
4020 FORt=1TO20STEP2
4030 IFb(t + 1) = @ THEN GO TO 4100
4040 PLOTDb(t),y — 1: DRAWDb(t + 1) — b(t),
4050 NEXT't
4100 FORt=1TO20
4110 LET b(t) = a(t)
4120 NEXT't
4130 DIM a(20)
4149 RETURN
Before describing some of the peculiarities of this routine, I suggest you try it out. Key it
in, and add:
1 CIRCLE 50, 5, 48: CIRCLE 50, 50, 44:
CIRCLE 200, 49, 37: CIRCLE 205, 38, 20
to provide something to shade in. Now RUN. It’s fairly slow, but it seems to work, as
Figure 2.6 demonstrates.

Now for the explanations. Lines 200—5@ set up the main program: a loop that checks
along each horizontal row (except the top and bottom ones) looking for bits of curve. If it
finds a bit it goes to a subroutine track which follows the curve along the line to find the
ends (as marked in Figure 2.5); then it goes to fest which decides, by examining the 3 X 3
region around each end, whether the curve crosses or not. If it does, the routine list notes
down the relevant coordinate.

After a row has been scanned in this way, it is filled in by joining the 1st point to the
2nd, then the 3rd to the 4th, and so on as suggested above. However, there is one tricky
feature. If you fill in the line too soon, it interferes with the test routine on the next line,
and you get nonsense. So the list of points is first stored in a buffer—the array a—and

then transferred to another array b on the next scan, ready to be plotted. Lines
4100—4130 perform this task.

11

12

(a)

e
o s g
o

\i’
§§ : N §
.

W t { § }
RN & &
. % % vd

i\\ N, S 3\3;
- o
\Mm -

(b)

Figure 2.6 Filling in the region between two test circles: before (a), during (b), and after (c).

To keep the program simple, it is assumed that the curves being shaded in do not touch
the border (rows @ and 175, columns @ and 255). So it scans rows 1 to 174 from columns 1
to 254 only.

THE MAP

So far so good, but will it pass the acid test? Will it shade the world map?
Load in your map, using

LOAD “map” SCREEN$
and then hit
GOTO10

(not RUN, which wipes the map!).

Now, your map may not be quite the same as mine was. What I got was Figures 2.7 and
2.8.

Figure 2.7 Shading in an outline map of the world—a few bugs . . .

Figure 2.8 ...and a few more!

So: if the routine fails on your map, as it did on mine, here’s what you do. Use the
sketchpad program to modify the map, removing dangling ends and touching curves.
Then shade it in.

Possibly a few flaws will still remain: I don’t guarantee that there aren’t other
undesirable features. (Breaks in curves cause havoc, but those are really just dangling
ends again.) But you’ll be able to spot where they arise, and use Sketchpad to eliminate
them. After a few shots, you’ll eventually end up with something like Figure 2.10. When
you do, save it under a new name, say

SAVE “solidmap” SCREEN$

and it’s ready to use in other programs.
If you think the shape is a little odd, it’s because the map I started from was a Hammer
equal-area projection, not the more usual Mercator projection.

THE PRAIRIE FIRE METHOD

There’s a totally different approach to the shading problem that you might like to think
about. The idea is to give the Spectrum a clue by “lighting a fire” on one of the dry-land
regions. To do this, just tell it (via keyboard or a moving pixel) the coordinates of such a
point. For example, the point 125, 8@ is in the middle of Africa.

Now let the fire spread: that is, fill in all neighbouring pixels unless you hit the
coastline. Using these as new starting points, spread the fire still further. It will only stop
when it reaches the coast. In fact, the African fire will spread into Asia and Europe
eventually. It will never reach the UK, the USA, or Australia; so you will have to input
suitable “sparks” to start fires there too . . . in fact, you need one ignition point for each
connected land-mass.

It’s not a difficult method to program, but the above sketch has to be made a lot more
precise. If you want an interesting project, this is a good one.

SET FIRE TO THE SEA

Since the sea is rather more connected than the land, a better way might be to set the sea
alight (you’ll have to light up the Caspian and Aral Seas separately), having set up the
land colour as PAPER.

15

16

If the same expression keeps turning up,
with different values for its variables,
don’t use a subroutine—try:

J User-defined Funclions

A function is a kind of “black box”’. You give it some numbers or strings, it gives you
some back. For example, if you give the function LEN the string “‘gthily” it gives you
back the number 6—the length of the string—because it works out

LEN “gthily” = 6.

The Spectrum has a lot of built-in functions like VAL, COS, TAN, EXP, and so forth.
But sometimes you find you keep on using a particular expression, over and over again,
on different variables. You can implement this as a subroutine; but that usually involves
lotsof LET a = 39: LET b = 21. . . commands before you can call the routine.

The DEF FN key (E-mode/SYMBOL shift/1) lets you set up your own functions; and
the FN key (E-mode/SYMBOL shift/2) calls them. Each must be followed by a single
letter: DEF FNa, and FNa; or DEF FNb and FNb; and so on through the alphabet. If its
value is a string, then you have to use FNa$, FNb$, etc. You can use capitals too; but the
Spectrum takes no notice. That is, FNa and FNA are considered to be identical. So
you’ve got 26 functions of each type at your disposal.

For example, suppose we find that our program keeps wanting to add three numbers
together and then divide by three, getting an average. We have lots of expressions like
(x +y +2z)/3and (pricel + price2 + price3) / 3 scattered around the listing. Then we set
up a function like this:

10 DEFFNa(p,q.r)=(p+q+r1)/3

Once this is done, we can replace the above expressions by:
FNa (x,y, z)
FNa (pricel, price2, price3)

wherever they occur.
Let’s test it out:

10 DEF FNa(p,q,r)=(p+q+r1)/3
20 INPUTx,y,z
30 PRINT FNa (x,y, z)

RUN this, and input things like:

2 3 (result 2)
4 4 4 (result 4)
77 91 3 (result 57)

to make sure it’s working OK.

Various points are worth noting. First, the variables p, q, r that occur in the function
definition are simply place-holders: you can use those letters elsewhere in the program
without any harm being done, and you can define the same function using other letters,
for example:

10 DEFFNa(a,b,c)=(a+b+c)/3

It doesn’t even matter if the letter used to name the function (here ““a”) occurs as a
variable inside the brackets that define it. The Spectrum can tell which is which.

Next, the letters inside the brackets must be single: you can’t use variables like pricel
in the definition. There is no harm at all, though, in using pricel when the function is
calculated somewhere: FNa (pricel, price2, price3) is fine.

You can have string variables in the definition, but they also must be only one letter,
followed by $. You can mix numbers and strings; and the computer is quite happy with,
say

10 DEFFNb (b, b$) = b * LEN b$

even though the “b” occurs in three places with three different meanings. Then FNb
multiplies the length of a string b$ by the number b. If you ask for

FNb (7, “cat”)
you’ll get the answer 21, which is found by working out
7 * LEN “cat” = 73 = 21.

The definition of a function does not have to come in the program before the function
is used; but it must be in there somewhere (rather like DATA definitions).
As another example, try the string-valued function

10 DEF FNmS$ (u$, v$) = u$ + u$ + v§

and find out what you get if you ask for

FNm$ (“B”, “C”)
FNmS$ (“a”, “gh!”)
FNmS$ (“co”, “nut”)
FNm$ (“Zsa(d”, “Gabor’’)
Every function-definition must include the brackets. But it can have no variables! If
you write
10 DEFFNk()=77

then FNk will give you the number 77 whenever you call it. (There are more subtle
occasions where this kind of thing can actually be useful: here it just looks perverse.)
Further, the function-definition can include variables that are not enclosed in the
brackets, provided these are assigned in the program. So
10 DEFFNa(x)=x+q
20 LETq=5
30 PRINT FNa (10)

gives the result 15; but

10 DEFFNa(x)=x+q
20 PRINT FNa (10)
30 LETq=5

gives an error message. (WARNING: press CLEAR before you check this out: the
value of q will still be in the machine from the first trial.) To check that the definition

17

18

really can go anywhere, try

10 LETq=5
20 PRINT FNa (10)
30 DEFFNa(x)=x+gq

SOME USES

It’s only worth defining a function this way if (1) you keep using the same expression over
and over again but with different variables, or (2) your program manipulates a function
which is not always the same one—such as a graphics program to plot out the graph of a
given function. Then you may prefer to write it to manipulate, say, FNa; and then have
the user edit in the desired function value. (Or sneaky tricks with VAL, and it can be
INPUT—at a price: a slower program. See Chapter 16.)

For example, the distance between points (a, b) and (c, d) on the screen (in pixel-sized
units) is given by:

10 DEFFNd (a,b,c,d)=SQR ((a—c)*(a—c) + (b—d)*(b—d))

which is the Spectrum’s version of Pythagoras’ Theorem. If you have a lot of distances to
deal with, this may be useful. (Not just in maths: you may have set up a map of the USA
and want to know how far it is from Los Angeles to Oklahoma City.)

Bear in mind the possibility of using logic values. Recall that a logical statement like

“x < > 4" is considered by the computer to have a numerical value: 1 for true, @ for false.
So

10 DEFFNo(u,v)=u>=0ANDu<=255ANDv>=0ANDv < =175

may look to you like nonsense; but to the Spectrum it’s clarity itself. In fact, FNo tests
whether a pixel position (u, v) is on screen or not:

FNo (u, v) = 1if (u, v) is on screen,
FNo (u, v) = Qif (u, v) is off screen.

So, if you keep needing to test for this, it’s a function worth thinking about.
Or, take the current rates for newspapers and periodicals by Air Mail outside Europe.
These depend on the weight, and zone (A, B or C) as follows:

Zone A |Zone B | Zone C

First 10 g 24 26 29
Each additional 10 g
or part thereof - L B

Let’s set up a user-defined function FNp to give us the price for any weight w grammes
and any zone z$ (= “a”, “b”, or “c”). It will take a numerical value, so we don’t have to
call it FNp$. And it will look like:

DEF FNp (w, z$) = something nasty . . .

Let’s take it stage by stage. First, thinking just of zone A. For simplicity, assume that
the weight is always greater than @. Then the “first 1§ grammes” always applies, so we’ll
certainly need to pay our 24p. The weight left overisw — 10. If this is @ or less, then we’re
done; but if not we must round it up to the next 10 grammes.

To round up a number n to the next multiple of 10, we can use the expression

=10+ INT (—n/10)
Try it: if n = 43 then we have:

—n=—43

—n/10=—423
INT (—n/10) = -5 (ves, try it! INT rounds down)
10« INT (—n/10) = —50
—10* INT (—n/10) = 50
which is what we want.
We’ll need to use this process several times, so let’s define a function:
DEF FNr (n) = —INT (—n/10)
which is the “round-up” function divided by 10. Great!
Now, in zone A, the price we pay is
24 + 11 * FNr (w — 10)
provided w > 10, and only 24 if w < = 10. Hmmm . . . logic values! We have to pay
24 + (w>10) * 11 * FNr (w — 10)

because (w > 10) takes value 1 when w > 10, adding on the extra bit; but value @ when
w < = 10, leaving just the 24.

Zones B and C give similar expressions, but with different values in place of the 24 and
11. How do we work them in?

If we use lower-case letters “a”, “b”, “c” for the zone variable z$, then logic values
come to our aid again. The number

24 % (z§ = “a”) + 26 * (z§ = “b”) +29 * (z§ = “¢”)
takes value 24 when z§ = “a”, 26 when z$ = “‘b”, and 29 when z$ = “c”’. (Why?) And we
can deal with the 11 — 14 — 15 bit the same way.
All of which leads us to the definitions:
10 DEF FNr (n) = —INT (—n/10)
20 DEFFNp (w, z$) = 24 * (z$ = “a”) + 26 * (z§ = “b”") + 29 = (z$ = “c”)
+(11*(z$ =“a”) + 14+ (z$ = “b”) + 15* (28§ = “c”)) *
(w > 10) * FNr (w — 10)

and now FNp (w, z$) does give the price of a newspaper, weight w, to zone z$.
Projects

1. Set up FNt so that FNt (x) is the cost of x cans of beer at 65 cents apiece.

2. Set up FNu so that FNu (x, p) is the cost of x cans of beer at p cents apiece.

3. Set up FNj$ so that FNj$ (a$, b$, c$) gives whichever of a$, b$, or c$ comes earliest
in alphabetical order. (Note: two strings a$ and b$ are in alphabetical order if a$ < =
b$, in the Spectrum’s notation for ordering strings.)

4. For newspapers registered at the post office, the prices table above becomes:

Zone A | Zone B | Zone C
First 10 g 13 15 16
Each additional 10 g 3 4 5
or part thereof

Define FNq (w, z$) to give the price of a registered newspaper of weight w to zone
8.

5. Combine FNq and FNp (in the text) to give a function FNr (w, z$, y) where w is
weight, z$ zone, and y = @ for unregistered papers, 1 for registered.

19

20

. . . then there was the programmer who
always used magenta ink because he liked
his programs to remain inviolate . . .

4 Conhrol Characiers

You’ve no doubt discovered that the top row of keys on your Spectrum behave dif-
ferently from the rest, as regards modes and suchlike. If you haven'’t, try the following
experiment. Hit, in turn,

NEW

CAPS SHIFT and SYMBOL SHIFT [for extended mode]
Key 4 in the top row

Ltﬁngers79

You'’ll find you have green fingers . . .

By using the top row of keys in extended mode (with or without CAPS SHIFT) you
can, from the keyboard, set colours, FLASH, BRIGHT, change the PRINT position,
and so on. The Manual gives full details of the effects of particular combinations of keys
and modes, on page 115; the important part for us is:

Key Effect in extended mode
Without CAPS SHIFT With CAPS SHIFT
1 PAPER blue INK blue
2 PAPER red INK red
3 PAPER magenta INK magenta
4 PAPER green INK green
5 PAPER cyan INK cyan
6 PAPER yellow INK yellow
7 PAPER white INK white
8 BRIGHT off FLASH off
9 BRIGHT on FLASH on
0 PAPER black INK black
EFFECT ON LISTINGS
For test purposes, input a few lines of program:
10 REM
20 REM
30 REM
Now hit, in turn,
(a) 1
(b) REM

(c) extended mode/CAPS SHIFT and 9
(d) ENTER

Watch the cursor carefully to make sure you actually get into extended mode. You’ll find
that the whole program, except for line 1, flashes at you. LIST it: it still flashes.

Repeat this, but use different keys in the top row, and sometimes leave out the CAPS
SHIFT, in (c). Hmmm . . . pity it affects the whole listing . . . or does it?

Go back to the flash version of line 1; and add

11 REM [extended mode/4]

Now everything after line 11 has gone green (colour 4). But it’s still flashing . . . Wasn’t
there a FLASH off in the table? So maybe we need:

11 REM [extended mode/4] [extended mode/CAPS SHIFT and 8]

to get rid of the flash but keep the green, from line 20 onwards.
Try it and see.

CONTROL CHARACTERS

What is going on?

If you look at the list of character codes in the Manual, page 183, you’ll find a bunch at
the front (numbers 6 to 23) that cannot be printed out (even as ? marks). These are
control characters which affect the behaviour of the systeni. Here’s the list:

Code Character
6 PRINT comma
7 EDIT
8 cursor left
9 cursor right
10 cursor down
11 cursor up
12 DELETE
13 ENTER
14 number (used in program organization)
15 (not used)
16 INK control
17 PAPER control
18 FLASH control
19 BRIGHT control
20 INVERSE control
21 OVER control
22 AT control
23 TAB control

These live in the memory like any other character, but they won’t PRINT or LIST
When you use the top row of keys in extended mode, you input certain of these
characters. For example, key 4 in CAPS SHIFT has the effect of the INK control
character, with the colour green.

Although you won’t see a control character in a listing, you will see its effect. And you
can check it’s really in memory, either by PEEKing the relevant addresses (Easy
Programming, page 93) or by the following experiment. Hit, in turn,

(a) 1
(b) REM

21

22

(c) E-mode/l
(d) E-mode/2
(e) E-mode/3
(f) E-mode/4
(g) E-mode/5
(h) E-mode/6
where E-mode refers to extended mode. Note that, unlike graphics mode, you have to
go into E-mode each time.
You’ll see that the cursor doesn’t move, after the REM: it just keeps changing colour.
Now use DELETE, held down for auto-repeat: see how long it takes to work its way past
all those control characters? Try again, pressing DELETE repeatedly in single steps:

watch the changes in the display. Obviously there are a lot of characters in memory that
aren’t getting PRINTed.

FLASHY LISTINGS

You can actually use this facility: it’s not just a pretty trick. For example, you can make
REM statements stand out in a listing, for easy visibility:

1 REM [E-mode/CAPS SHIFT/9] This will stand out [E-mode/CAPS/8]
10 REM
20 REM
etc.
LIST this program, and check that the REM statement continues to flash. Now SAVE it
on tape, NEW, LOAD back . . . yes, it’s still flashing.

Similarly you can colour-code sections of program, for example subroutines. Put the
control characters into the start of the first line of the routine (after the line number—or
else at the end of the previous line: anything before a line number is ignored). All
subsequent lines will be LISTed in that colour.

To make a listing invisible, set its INK and PAPER colours to the same thing. (But it
still LLISTs correctly; or it will list from a line after the one with the control character, so

you can’t protect against pirates this way. Nothing gives completely foolproof pirate-
protection, but there are tricks, of which this is the simplest, to discourage amateurs.)

USE IN PROGRAMS

You can make use of control characters in programs, to avoid having to set INK,
PAPER, etc. all over the place. This is especially useful in creating colourful displays,
title pages for programs, and suchlike.
For example, to print out the French tricolour at any position r (row) and ¢ (column),

use this:

10 PAPER 0: INK 7: BORDER §: CLS

20 INPUTTr,c

30 FORi=0TO2

40 PRINT AT + i, c; “(E-mode/1) O O (E-mode/7) O O

(E-mode/2) 0 O
50 NEXTi

where the boxes are SPACE characters.

To get the Italian flag, change the number 1 in line 40 to 4.

You won’t have failed to notice that the string in line 4@ is LISTED in its blue-white-
red glory.

Which leads us to something a tiny bit more ambitious: Old Glory as a single string.
You can PRINT an approximation to the American flag using control characters, by
using Figure 4.1 and the graphics mode. It takes time and care; but at the end you’ll
understand the control characters from keyboard pretty well!

Red

White

Blue

Black

Figure 4.1 Old Glory entered from the keyboard as a single string.

Here’s a blow-by-blow account: you’ll soon see the flag building up as you work, and
you’ll be able to anticipate what’s needed next. With practice, you can do this kind of
thing from scratch without any initial sketches. (g3cis key 3 in graphics mode with CAPS
SHIFT.)

10 PRINT “(E-mode/1) (E-mode/CAPS/7):::::

(E-mode/2) g3c g3c g3c g3c g3c (E-mode/d)
(22 spaces) (E-mode/1) (E-mode/CAPS/7) : : : : :
(E-mode/2) g3c g3c g3c g3c g3c (E-mode/@)
(22 spaces) (E-mode/1) (E-mode/CAPS/7) : : : : :
(E-mode/2) g3c g3c g3c g3c g3c (E-mode/0)
(22 spaces) (E-mode/2)
(g3c ten times) (E-mode/0)
(22 spaces) (E-mode/2) (g3c ten times)
(E-mode/0) (22 spaces) (E-mode/2) (g3c ten times)
(E-mode/@) (22 spaces) (E-mode/2) (E-mode/CAPS/Q)
(g3c ten times) (E-mode/CAPS/7) (E-mode/0)”

Phew! Now, set the PAPER and BORDER to black, INK to white, and RUN. The stars

part could be improved (think about user-defined graphics), but it’s clear what it’s meant
to be. And all in one string . . .

23

24

For fast, colourful, lo-res graphics, you can use this technique to turn an entire
screenful of coloured graphics characters into a single string, and PRINT it almost
instantly. So any picture you can design on a 64 X 44 grid can be input, from the
keyboard, as a string with 704 characters. It takes time, and patience; but it’s worth it for
an attractive display, and it’s an efficient use of memory. (In practice, for ease of keying
in and editing, I suggest 5 or 6 strings of 128 or 16) characters.)

No-res
graphics

“It’s not what you do, it’s the way that
you do it.”’ The same data, displayed

in different ways, can be crystal clear or
clear as mud. Graphics and colours add
comprehensibility. But have you ever
thought of using a formula to play a tune?

5 Display lechnigues

Computing is not just a matter of generating vast swathes of numerical print-out, even if
this does impress visiting bureaucrats. It’s important to find suitable ways of presenting
data too. I explore several of these at various points in this book. Here I'll take a look at
five possible ways of presenting a series of numbers produced by a rather interesting
mathematical process. The process itself is discussed at the end, because I know a lot of
people are less entranced by mathematics thanIam . . .

The program asks you to choose the type of display required from a menu of five
options: then you must input a number between @ and 100@. The listing is so simple that
I’ll give it all in one go:

10 DIMa(5)
20 LETa(l) = 40: LET a(2) = 255:
LET a(3) = 7¢4: LET a(4) = 1000:
LET a(5) = 704
200 PRINT “Choose type of display:
1. Numeric
. Graphic
. Colour
. Sound
. Both”
210 INPUTd
300 PRINT '’ “Choose a number between @ and O O O O 1000”
310 INPUTk: CLS
320 LETk =k/250: LETx=.7
350 FORt=1TO a(d)
360 LETx=k=*x*(1—x)
370 GO SUB 1009 = d
380 NEXTt
399 STOP

»n & W N

26

1000 REM numeric

1010 PRINT x,

1020 RETURN

2000 REM graphic

2010 IFt=1THEN PRINT k * 250
2020 PLOTt,0: DRAW 0, 170 * x
2030 RETURN

3000 REM colour

3010 PRINT PAPER INT (8 * x); “(0;
3020 RETURN

40090 REM sound

4010 BEEP .05,20 — 40 « x

4020 RETURN

5000 REM both

5010 GO SUB 300¢: GO SUB 4000
5020 RETURN

Before going on you might like to try this out. Any number in the ¢—1000 range is
allowed; but numbers bigger than 75@ produce more interesting results. Option 1 prints
out rather meaningless lists of numbers; option 2 produces some quite pretty spiky
things; option 3 draws coloured bars and blocks all over the screen; and option 4 plays
quite striking tunes, sometimes rhythmic and repetitive, sometimes more complex.
Option 5 combines 3 and 4.

A SYSTEMATIC APPROACH

Let’s take a more systematic look, by picking a value of the number to be input, and
comparing the types of display. In fact we’ll take four standardized values,

766 880 897 985

which between them illustrate the crucial points.

RUN the program with option 1, and input 766. You’ll get a table of numbers in two
columns. Reading along the rows in turn these give successive values of a number
calculated by line 360 of the program. It’s not easy to see anything significant (which is
the trouble with numerical, tabulated output); but the trained eye will notice that in each
column the numbers become more and more alike as you read down the screen. The
left-hand one is close to @.58, the right-hand one to 0.75. So the values are alternately
flipping from one value (or near it) to the other. The sequence of values is (tending
towards) something that is periodic, that is, repeats the same values over and over again;
and the period is 2.

Repeat, with option 1, but input the next test number, 88). Now the result is different:
the numbers don’t settle down at all. However, each column is trying to alternate
between two values: .82 and 3.87 on the left; #.51 and 0.37 on the right. The whole
sequence repeats every four goes, so it’s periodic of period 4.

Now try option 1 with 897. Hmmm, well . . . is there a pattern or not? There are quite
a few 0.89s on the left; and several things near §.33 on the right; but it’s not very clear.

Not to worry; option 1 with 985 is even worse. In fact, it looks a total mess.

Option 2 makes life much easier. For the number 766 it gives Figure 5.1, and the
period-2 behaviour is very clear from the way the spikes go up-down, up-down. For 880
the period 4 is also very apparent (Figure 5.2).

Figure 5.1 Graphic display: k = 766. Period 2.

Figure 5.2 Graphic display: k = 880. Period 4.

28

For 897 there are definite traces of periodicity, but it’s a little irregular (Figure 5.3).

Figure 5.3 Graphic display: k = 897. Traces of periodicity remain.

For 985 the spikes are pretty much random (Figure 5.4).

Figure 5.4 Graphic display: k = 985. Chaos!

The colour plot (option 3) brings out the periodicities even more strikingly—partly
because the periods 2, 4 etc. all divide the number of characters in a row (32), a fortunate

coincidence. For 766 you will see vertical green and cyan stripes (except near the very
beginning), period 2. For 880 (Figure 5.5) the stripes repeat the 4-fold pattern red-
yellow-green-white. For 897 (Figure 5.6) there is a definite striped effect, with colours
chosen from yellow-magenta-white-green-red; but there are occasional lapses where a
square gets a different colour from the stripe. And for 985 (Figure 5.7), you just get
random-looking squares.

——

K

Figure 5.5 Colour plot (here in black and white). Pattern of bars shows periodicity when k = 880.

K

Figure 5.6 Colour plot (in black and white): partial periodicity
with occasional lapses when k = 897.

29

30

Figure 5.7 Colour plot (in black and white): k = 985, random pattern of squares showing chaos.

One doesn’t normally think of representing data by a tune; but here it produces
intriguing results: the ear picks up the periodicity as rhythms. RUN with option 4, the
number 766 produces a monotonous doo/dah doo/dah sound, like. an ambulance (but
not the right notes). 880 is more compulsively rhythmic, repeating a four-note phrase
over and over again: you could use it as a backing to a pop record. 897 has a pleasant
mixture of rhythm and irregularity: certain phrases recur again and again, but at oddly
spaced intervals. 985 sounds like bad Schonberg.

Option 5 lets you see the colours and hear the sound together: they tend to reinforce
each other.

Try other values for the number, now. You’ll find that for numbers less than 750
everything settles to a single value (very dull) and that the behaviour gets more and more
peculiar, the larger the number gets.

POPULATION MODELLING

Very fascinating, no doubt: but what’s it all about?

The program is based on a formula that is used in theoretical models of animal
populations. Imagine a lake large enough to support 100 hippopotami (at most). Dep-
ending on the reproductive rate per generation, how does the number of hippos vary?
With this particular program, the number x that is output or plotted (or beeped) is given
by

number of hippos in the current generation

maximum number possible (= 100)

and the reproductive rate is 1/250 of the number k that you input. If this is less than 1
(k < 250) the number of hippos tends to zero: the hippo population slowly dies out. If it is
between 1 and 3 (k between 250 and 750) the number settles to a single steady value.
Above that, it starts to oscillate more and more wildly.

For example, the period-2 sequence for k = 766 corresponds to having 58 hippos one
year, 75 the next, then 58 again, then 75 again, and so on. What happens is that the
population at 58 is less than the lake can sustain, so the number of hippos increases; but it
overshoots the happy medium to give 78, which is too many. So the next year it
drops—too far again—to 58; then repeats.

The random behaviour seen at k = 985 (and partly at 897) is very interesting
mathematically, because we know it isn’t really random at all. It’s produced by the very
simple formula on line 360 of the program. But it certainly looks random. It’s called
deterministic chaos, and it’s a two-edged sword. On the one hand, it shows that
apparently random events can have a simple underlying structure; on the other, it casts
doubt on the ability of apparently well-behaved theories to make useful predictions. This
isn’t the place to teach you about chaos; but if you want to know more, I can recommend
pages 307-318 of Concepts of Modern Mathematics by Ian Stewart (no, it’s not Shiva
actually: it’s Penguin Books).

31

32

PEEK lets you see what information an
address holds, and POKE lets you change it.
The question is, where to PEEK and what to
POKE it with!

6 Sysiem Variables

Spectrum memory, as you are no doubt well aware, comes in two kinds: Read Only
Memory (ROM) and Random Access Memory (RAM). Only in RAM can you change
the contents of a memory location (address). Most of the machine’s operating system
lives permanently in ROM; but a certain amount is set up in RAM so that it can be
changed as necessary. This is the system variable area of RAM, and it runs from address
23552 to 23733. The Manual gives a comprehensive (but not always comprehensible) list
on pages 173-176.

Most of these variables are not especially useful, as far as incorporating them into
programs is concerned; but some are. Although they are given names in the Manual,
these are for reference purposes only and are not directly accessible from BASIC.

To find out the value of a systems variable, you use PEEK: to change it, you use
POKE (see Easy Programming, page 93). For more detail, see below.

The aim of this chapter is to describe those system variables that you are likely to find
useful, and to give you a few ideas for using them. The important thing is to realize that
the system variables are there, and that you are free to bend them to your will should the
occasion arise.

KEYBOARD RESPONSE

Table 6.1

Mnemonic Address Standard Value

REPDEL 23561 35
REPPER 23562 5
PIP 23609 0

These control the waiting time for a key to auto-repeat; the speed with which it repeats;
and the length of keyboard BLEEP on entering a character. For a faster-responding
keyboard with audible BLEEPs, enter (in command mode or from a program):

POKE 23561, 10

POKE 23562, 1

POKE 23609, 50

You can vary the numbers to suit your tastes: sensible ranges seem to be (respectively)

10-20; 1-3; 40-100.

To avoid having to type these in every time you switch on, you can make a tape with
them on, and LOAD it first. This of course takes even more time than typing them
out—but if you also include on the tape your favourite utilities (Line-renumbering, see
Chapter 12; Attribute-changing, see Chapter 7; some common user-defined graphics) it
can make a helpful package to have sitting up in the BASIC area.

ORGANIZATION OF MEMORY

The computer’s memory is divided up into blocks that do different jobs. The boundaries
between these blocks can wander around: the addresses of the boundaries are held in the
systems variables as given in Table 6.2.

Table 6.2
Mnemonic Addresses Value after NEW (16K machine)
(16384 start of display file) 16384
(22528: start of attributes file) 22528
(23296: start of printer buffer) 23296
(23552: system variables area) 23552
(23734: used for microdrive) 23734
CHANS 23631-2
PROG 23635-6
VARS 23627-8
E-LINE 23641-2
WORKSP 23649-50
STKBOT 23651-2
STKEND 23653-4
RAMTOP 23730-1 32599
UDG 23675-6 32600
P-RAMT 23732-3 32767

All of these are 2-byte variables. This means that to find, e.g. where the program is, you
must use

PRINT 23635 + 256 * PEEK 23636

and in general (first byte)+256+(second byte). Conversely, to change PROG to, say,
13244 (I don’t recommend this! It’s just chosen to give the general idea) you have to work
out what 13244 is in the form (byte) + 256 * (byte). In fact the second (or senior) byte is
given by

INT (13244/256), which is 51
and the first (junior) byte by

13244 — 256 = INT (13244/256), which is 188.
So the command would be

POKE 23635, 188: POKE 23636, 51

Similarly to change RAMTOP to the value n (see below for reasons for wanting to do
this) you use

POKE 23730, n — 256 * INT (n/256): POKE 23731, INT (n/256)

Only RAMTOP and UDG can usefully be POKEd, among this set of system
variables; but each can be PEEKed to find out whereabouts each section of memory lies.
CHANS is the area for the microdrive communications system, and you won’t find
much use for that. PROG is the start of the BASIC program area: you need to know it
for (e.g.) the line-renumbering routine in Chapter 12. VARS is the place where the

33

34

variables are stored: if you want a fancy line-renumbering routine you might find a use
for it. Or, given enough persistence, you could write a routine to delete from memory
specific variables (a kind of local CLEAR); though Machine Code would be better here.
E-LINE up to STKEND are of more interest to the Spectrum than to its user.

The space between STKEND and RAMTOP, however, is important. It’s the amount
of free memory available. (Actually, the machine puts two stacks (see Machine Code and
Better Basic) in there: one for the Z8DA chip, one for the GOSUBSs; but these are
normally quite small.) So to estimate (to within a few dozen bytes) the memory that’s
spare, you use:

PRINT PEEK 23730 + 256 * PEEK 23731 — PEEK 23653 — 256 * PEEK 23654

or incorporate such a command into a program. In fact 256 * (PEEK 23731 — PEEK
23654) is simpler and close enough.

RAMTOP normally sits at the start of the user-defined graphics; but it can be lowered
to make room for things that you don’t want the BASIC system to clobber. For example,
Machine Code routines (see Machine Code and Better Basic) or extra user-defined
characters (see below). Stuff above RAMTOP is not affected by NEW. (It’s also not
saved; but you can use byte storage, see the Manual page 142, to get round that.)

UDG is where the user-defined graphics area starts. The main reason for wanting to
change this is if you're short of memory and don’t want all 23 user-defined characters.
Then you raise the value to release the extra space.

BUILT-IN CLOCK

The systems variable FRAMES counts the number of TV screen frames that have been
scanned since the computer was last switched on. It scans 50 frames per second, so
effectively you have a built-in clock. The Manual, pages 129-131, goes into this quite
thoroughly, so I won’t repeat the description here; but the main point to notice is that the
variable has three bytes: its numerical value is

PEEK 23672 + 256 * PEEK 23673 + 65536 * PEEK 23674
and the number of seconds elapsed is this, divided by 50. Notice that address 23674 only
changes every 65536/50 = 1310.72 seconds, or about twenty minutes. So for a lot of
applications (such as the next) the first two bytes are all that matter.
Here’s a program to test your reaction-time.

10 PRINT “Reaction time test”

20 RANDOMIZE

30 PAUSE (100 + 309 + RND)

40 LET t0 = PEEK 23672 + 256 * PEEK 23673

5@ PRINT AT 19, 15, “GO!™

60 IFINKEYS$ = “"THEN GO TO 60

70 LETtl = PEEK 23672 + 256 * PEEK 23673

8) LETt=tl—1t)

99 IFt<@THENLET!t =t + 65536

100 PRINT AT 15, 2; “Your reaction time is [37’; t/50; ““[J seconds”

Line 90 takes care of the (unlikely but possible) event that the third byte of FRAMES has
clicked over by 1 during the reaction period.

To use the program, RUN it: as soon as “‘GO!” appears on the screen, press any key.
(Don’t cheat by holding it down!)

THE CHARACTER SET

The systems variable CHARS holds the address of the character set—a table of @s and 1s
that defines the shape of the screen characters. More precisely, it holds 256 less than the
address; and the table starts with character 32, a SPACE.

Ordinarily, CHARS takes the value 15360). The instructions for printing out character
number n are contained in bytes 15360 + 8 * n to 15360 + 8 * n + 7, and give the eight
rows of the 8 X 8 square of pixels for that character, in binary, just as for user-defined
characters (Easy Programming, page 49).

You can PEEK these, to see how a given character is stored in ROM and built up on
screen, using this program.

10 INPUT “Character ?”’; c$
20 IFc$ = “" ORLENCc$ >10OR CODE c$ < 32 THEN GO TO 10
30 LET n= CODEc$
40 FORi=0Q0TO7
50 LETx = PEEK (15360 + 8 *n + i)
6@ LET p$ — ¢
70 FORt=1TOS8
80 LETxs=INT(x/2): LETxj=x—2*xs
99 LETp$ = (“*” AND xj) + (“.” AND NOT xj) + p$
100 LETx = xs
110 NEXT't
120 PRINT p$
130 NEXTi

This takes the binary numbers in ROM and turns @) into a dot and 1 into an asterisk. So
the letter “a” gives this:

Address in ROM Contents in binary Graphic effect
16136 0000Q0OOO |
16137 00000Q0O0OQOO |
16138 00111000 RNy
16139 POOOO1IOG | *
16140 P0111100 I
16141 01000100 * L L
16142 00111100 L
16143 00000O0O0O |

See the “a’” shape among the stars?

The dots and stars are for clarity: to get the true effect, change “.” to “[0” and “+”" to
“m”.

You can use this technique in programs to produce letters eight times the usual size.
By replacing each square by a 2 X 2 square, you can get 16 times original size: a bit
chunky, but dramatic. By manipulating the eight binary numbers in 2 X 2 blocks, you
can bring the graphics characters into play and produce letters 4 times the usual size (see
over). Afd, by inventing suitable user-defined graphics, you can produce characters
double the usual size.

More striking is the effect of POKEing CHARS.

35

Get a program into RAM which has about a page of listing, for better effect. Enter by
direct command

POKE 23606, 2
Hmmm . . . that’s a bit weird: the characters have shifted a couple of lines and got a bit
broken up. Now try

POKE 23606, 8
(and ignore the screen display messages, which also look weird). Now you’ve got nice
letters again, but the listing seems to be in some sort of code . . . In fact each letter has

got changed to the one next to it in the character table, because we've fooled the
computer into looking eight bytes ahead of where it thinks it is.
For real fun, enter

POKE 23607, 50

Judicious use of this command, in a program, would make listings of it incompre-
hensible. However, a bit of detective work by the would-be-pirate would edit them out
again... LifeisSad. ..

To get back to a comprehensible display, enter

POKE 23606, @: POKE 23607, 60

but be careful since you won’t be able to see what you’re doing on the screen until it’s all
over. Pulling the plug for a second will reset if all else fails.

This is all very fascinating, but what’s the point? The main point is that you can provide
the computer with entire new character sets—as many as you have room for in memory
—rather than just the 23 user-defined characters. The way to do this is explained in
Chapter 15, because it would make this chapter too long at this point; the idea is to build
up the new character set in a part of memory that the BASIC system doesn’t use, by
lowering RAMTOP and POKEing in the codes for the rows. Then the odd POKE to
CHARS and all your new characters become accessible. POKE it back, and the old ones
show up. Two tiny subroutines to do the POKEing, plus 2048 bytes of data, and you've
got 256 new characters—graphics symbols, mathematical symbols, or whatever. Of
course you don’t have to go the whole hog: fewer than 256 characters can be set up by the
same method, if you prefer.

By using the graphics characters (top row of keys) you can draw symbols at four times
their usual size, which is quite nice for dramatic captions. Here’s a program which
accepts any string of length 8 or less, and expands it fourfold. (The limit on length is just
so that the result fits the screen: you can easily modify it if you want to write several
lines.) It’s based on the clever way that the Sinclair people have (this time!) coded the
graphics symbols. To get the CODE for a graphics symbol, add together the numbers in
the grid

corresponding to its black squares; then add 128. For example Mg has code 2 + 4 + 128
= 134. You can check this from page 92 of the Manual.

10 DIMq (8, 8)

20 LET i@ = PEEK 23606 + 256 * PEEK 23607
30 INPUT c$

40 LETs=LENcS$:IFs>8THENLETs=8
5 FORr=1TOs

60 LETi=i0+8+CODEc$ (r)

100 FORa=0TO7

110 LETm = PEEK (i + a)

120 FORb=0TO7

130 LETq(a+1,8—b)=m —2*INT (m/2)

140 LET m = INT (m/2)

150 NEXTb

160 NEXTa

200 FORu=1TO4

210 LETt$ =~

220 FORv=1TO4

230 LETk=qQ2*u—1,2*v)+2+*qQ2*u—1,2*v—1)
+4+xq2*u,2*xv)+8*q(2*u,2*v—1)

2490 LETt$ =t$ + CHRS (128 + k)

250 NEXTv

260 PRINT ATu,4+r—4;t$

270 NEXTu

280 NEXTTr

Figure 6.1 shows the result of inputting “Testing?”.

TEsting’?

Figure 6.1 Testing quadrupled characters.

IMPOSSIBLE JUMPS

The Spectrum lets you leave out lots of line numbers (a major objection to BASIC—why
number lines you don’t want to refer to?) by writing several statements on one line:

10 LETa=1:LETb=49:PRINTa + b: GOTO 10

(say). All well and good, but you can only jump (with GO TO) to the first statement in
such a line.

Unless you POKE the system variables NEWPPC and NSPCC, in addresses 23618-9
(2 bytes for NEWPPC) and 23620 (1 byte for NSPPC). This forces a jump to the line held
in NEWPPC, and the statement number in NSPPC.

Rather than elaborate the theory, here’s a test program that makes all clear.

3 INPUTa
5 POKE 23618, 10: POKE 23620, a
7 PRINT “I wasn’t supposed to come here”
10 PRINT “1”: PRINT “2”’: PRINT “3”
RUN this, and INPUT 1 for a; try again witha =2 and a = 3.

Line 7 is never reached at all. The first command in line 5 forces a jump to line 1. Ifais
1, the second command in line 5 forces a jump to the first part of line 10; if ais 2 it causes a

~ jump to the second part; if a = 3, to the third.

38

In general the jump is forced by the command
POKE 23618, nj: POKE 23619, ns: POKE 23620, a
which has the same effect as
GO TO nj + 256 * ns, a-th statement

(were such a command possible in BASIC, which it isn’t).

One oddity: IF/THEN statements. The THEN part is treated by the computer as a
separate statement in the line, which has to be included in the count. And if you jump to
the THEN part, using NSPPC, you’ll get an error message ‘“Nonsense in Basic”. To see
what happens, try this:

INPUT x

INPUT a

POKE 23618, 10: POKE 23620, a
PRINT ““I wasn’t supposed to come here”

10 IF x = @ THEN PRINT ““1”: PRINT “2”: PRINT “3”

N D W

The computer thinks of line 10 as having four commands:
(IF x = @) (THEN PRINT “1”’) (PRINT “2”") (PRINT “3”)

so you’ll have to try the values 1, 2, 3, 4 for a. Putting x = @ makes the IF true; x = 1
makes it false. The resulting print-out is like this:

x | a | Print-out on screen
® | 1 |12 3 (incolumns)
2 | Nonsense in Basic
3117213
4 |3
1 | 1 | (blank—condition not true)
2 | Nonsense in Basic
3123
4 |13

Notice that even with x = 1, jumps to the third or fourth statement produce a print-out:
the IF/THEN is ignored (as it would be if the statements had been on separate lines, and
you’d used a suitable GO TO).

THE BOTTOM OF THE SCREEN

The attributes for the lower part of the screen (where the error messages come) are set by
the machine; and occasionally you can end up with a block of colour at the bottom which
doesn’t match the border, if you change the border in a program run. The system
variable BORDCR at address 23624 contains 8 = ¢ where c is the colour number.
POKEing it doesn’t produce an immediate effect, however; but if you don’t mind
clearing out your variables, you can reset the colour using

POKE 23624, 8 = c: CLEAR

You may find a use for this. See also Chapter 7 on the display and attribute files.

While on the topic of the “Message” section of the screen, there’s another way to get
at it by using a command designed for the microdrive. Try this program (# is on key 3,
symbol shift).

10 PRINT #0; “Hello there!”
20 GOTO?20

(The last command is there just to stop the “OK™ message appearing and obliterating
everything.) Using PRINT # 0 you can print to the “Message” section. There are some
quirks; for example, you tend to lose line 21 of the main section, or get scrolls when you
don’t expect them. You can PRINT 0 a message of more than 64 characters: the lower
section expands and scrolls up. Using colour commands and/or control characters you
can get colour into the act as well.

If you’ve got a printer attached, try using PRINT 33 instead. This time, the message
goes to the printer—just like LPRINT.

PRINT # 1 also produces messages in the lower section of screen; and PRINT 2
produces them in the usual place—like plain PRINT. The other PRINT tn commands,
for n > 3, refer to the microdrive system.

This is useful to know if you want to print out a series of messages (say) with the
options of using the screen or the printer. Use

PRINT #n; “Whatever the message is”

Then setting n = 2 gives screen, n = 3 printer. This is a lot better than the alternative

[F n = 2 THEN PRINT “Whatever the message is”
[F n = 3 THEN LPRINT “Whatever the message is”

SCROLLING

To my mind, the most infuriating feature of the Spectrum is the way it asks for scrolls.
You have to keep hitting the keyboard to make it scroll, or stop it scrolling; and mine
usually ends up scrolling when I want it to stop, and stopping when I want it to scroll. The
whole system is distinctly perverse and I wish Sinclair had thought a bit harder about it.

If you want to force a scroll from a program, you can use the systems variable
SCR-CT, address 23692. This holds the number of lines left before a scroll request is
printed out. So the command

POKE 23692, 2: PRINT AT 21, 31: PRINT

causes it to scroll up one line, without asking for a keyboard input. (I mentioned this in
Easy Programming, but it’s worth mentioning again for completeness.)

PLOT COORDINATES

I mentioned these too: same reasoning applies. The two-byte systems variable
COORDS holds the pixel coordinates of the last point PLOTted. The addresses are:

39

23677 row coordinate,

23678 column coordinate.

So, if you've just used
PLOT 47, 124
then address 23677 holds 47, and 23678 holds 124. Check this:

10 INPUT row, column
20 PLOT row, column
30 PRINT PEEK 23677, PEEK 23678

You use COORDS, of course, to find out where you are at the moment before doing a
DRAW (which moves you from the current PLOT position by the offsets specified in the
DRAW command, as you well know). If you want to draw to a specified point a, b—and
have forgotten, or not stored in the machine, the current PLOT position—you can use

DRAW a — PEEK 23677, b — PEEK 23678

The main use for this would be in curve-plotting, but you might also find a use for it if you
use the keyboard to move a pixel around (as in Chapter 1, the Sketchpad program) and
want to know where you are.

Ever got a really nice diagram on the screen,
but in a terrible colour combination? And
the only way to change it is to change the
program, which wipes the screen, so you have to
start again . . .

There’s a better way.

1 Anlribute and Display kiles

If you've owned a ZX81 you’ll know that it runs at two speeds, sensibly called FAST and
SLOW, and that the screen display blanks out in FAST. You’ll also be aware (see
Machine Code and Better Basic) that the screen display is held in a part of RAM called
the display file, which moves around and is held by a system variable called D-FILE. (If
you haven’t owned or used a ZX81, skip this paragraph. Oh dear, too late.)

The Spectrum isn’t like this: it is pure and un-D-FILEd.

The hardware for the screen display works all the time, so there is no SLOW speed
(and hence no need for speed commands). The information for the screen display is held
by two chunks of memory, the attributes file and the display file. These live in fixed
positions in RAM, and work in different ways.

ATTRIBUTES

The attributes file is easier to understand (and, unless you’re a Machine Code buff, more
useful anyway). >

The screen display consists of 22 lines (24 including the bottom bit for messages) of 32
characters each, making a total of 22 * 32 = 704 (or 24 * 32 = 768) positions. PRINT AT
1, ¢ produces a character in the c-th position along row r (counting from @ upwards). The
character printed there is held in display file; but its attributes (colour, flash, etc.) are
held in the attributes file. The order in which the attributes are held is straightforward:
start at top left and read along rows from left to right, just like reading a book. The
attributes file starts at address 22528; so the attribute for row r, column c is held at
address:

22528 +32*r+c

You can POKE this to change the attribute without clearing the screen. This is useful,
because the PAPER and INK commands only affect newly printed stuff.
Each attribute is a single byte, whose eight bits are divided up like this:

FLASH || BRIGHT || three for paper three foi ink

on/off on/off bits colour bits colour

where “on” is 1, “off” is @ as usual.
In other words, for FLASH value f, BRIGHT value b, PAPER value p, and INK
value i, the attribute value is:

128*f+64*b+8*p+i
You can find out the attribute of row r, column c, by using
LET att = ATTR (1, ¢)

and you can convert this to a list of values f, b, p, i using:

42

LET f = INT (att/2)

LETb = INT (att/4) — 2 «

LET p = INT (att/32) — 16 *f — 8+ b
LETi = att — 8 » INT (att/8)

The following program converts the screen display so that every cell has the same
(chosen) attribute. For example, if you’ve laboriously fed in a world map in black ink on
white paper, and now you want red ink on yellow paper, you can make the change
without losing the map or starting again. Use direct entry, and type:

LETf=0:LETb=0:LETp=6:LETi=2:
LETatt=128+*f+64+b+8*p +i: FORt=0
TO 703: POKE 22528 + t, att: NEXT t

Better still, have this in memory already, as part of a general utility program: then you
can INPUT, b, p, i. Of course, you could also work out in your head that att =8 *6 + 2
= 50 here; so the command becomes

FOR t =) TO 703: POKE 22528 + t, 50: NEXT't

and you’'re in business!
If you change the loop to

FOR t =0 TO 767 etc.
then you’ll also change the lower part of the screen; and
FOR t = 704 TO 767

changes just that bit. The main time you need this is when you’ve loaded in a picture
(LOAD “Mona Lisa” SCREENS$) and it ends up with the wrong colour for the lower
part of the screen, thanks to changes in BORDER since the picture was SAVEd. Unlike
BORDCR, Chapter 6, you don’t have to CLEAR variables. You won’t need this often,
but it might just be useful.

For rapid attribute-changes, this routine is too slow. The remedy is to go to Machine
Code, see Spectrum Machine Code, by Ian Stewart and Robin Jones, Shiva, Chapter 14.

DISPLAY

This is much more complicated, because each character in the display is stored as a list of
eight bytes (its rows in 8 X 8 pixel form; see Chapter 15). And these are not stored in the
obvious order.

If you’ve ever loaded a picture using SCREENS$ you’ll have noticed the curious order
in which the computer “paints in” the picture. It does it in exactly the order that the bytes
are stored in the display file.

To see this clearly, RUN this program:

10 FORr=0TO21
20 PRINT “[32 inverse spaces, or graphics character g8¢’s|”
30 NEXTr

Then save it: SAVE “blank” SCREENS. Finally, CLS and LOAD “blank” SCREEN$
and watch what happens. (If you miss out the CLS you’ll not get much joy . . .)

It’s easier to describe the process in terms of the coordinates used for hi-res graphics, a
256 X 176 grid. Number the rows from 175 at the top to @ at the bottom, and the columns
from @ at left to 255 at right.

The display file starts at address 16384.

The first 32 bytes hold the instructions for line 175. Each byte governs an 8-column
segment of that line. The first byte deals with columns #-7, the next with 8-15, and so
on. If you CLS and then input

POKE 16384, BIN 01010101
or the decimal equivalent
POKE 16384, 85

you’ll see a row of four dots

at top left. Change it to POKE 16385, 85 and so forth, and see how the row of dots
moves. The dots, of course, are the binary number $1010101 converted to graphics: 1
being “plot a pixel”” and @ “plot a blank’ on the hi-res grid.

Each horizontal line of display goes into the display file as a sequence of 32 bytes, in
order.

Unfortunately, the lines themselves don’t go in numerical order at all, as we’ve just
seen.

First these lines go in:

175 167 159 151 143 135 127 119

(think of them as the top line of the first eight rows of characters). Then the computer
goes on to the second lines:

174 166 158 150 142 134 126 118
Then
173 165 157 149 141 133 125 117

and so on until it reaches line 112. By now the top third of the screen (rows @—7 in lo-res)
have been dealt with.

Then the next third is dealt with in a similar order; and finally the last third, including
the “messages” section of screen.)

I've described this mostly to satisfy your curiosity: you’ll only need to know it if you
want to write moving graphics in Machine Code, or that sort of thing. If you do want to
do that, it would take too much space here to describe how: Spectrum Machine Code
takes the topic further.

He went to a stag-beetle

party last night

Projects

1. Modify the attribute-changing program so that different sections of screen get
different attributes, by using suitable DATA statements. Use it to produce a “solid”
map of the world, like the one in Chapter 2 but with the continents (so far as is
practicable) shaded in different colours, and cyan oceans.

43

2. If you're mathematically minded, show that the following sequence of instructions
calculates the position in display file corresponding to a hi-res pixel in row r, column

C.

10
20
30
49
50

60
70
80
9
0

1

INPUTTr, c

LETr1=175—r

LET b = INT (r1/64)

LET c1 = INT (c/8)

LETc2=c—8=*cl

LET r2 = INT (r1/8)

LETr3=r1 —8*r2
LETa=2048+b + 256 * 13 + 32 * 12 + c1 + 16384
LET bitpos =c2 + 1

PRINT “The pixel with hi-res coordinates OJ”; r; “[0’; ¢;
“Oisstored in the display file at address (”; a; ““ [J at bit number [J’; bitpos

(Here the bit-position bitpos runs from @ to 7 along the byte from most significant
figure to least, like this: #1234567.)
Sinclair presumably have a good reason for using this particular order . . .

And now the Sp=ctrum gets its own back
by taking a look at your system
variables . . .

8 Psychospectrology

... The art of psychological experiment with a Spectrum.

The idea of this chapter is to use the computer to investigate certain curious pheno-
mena in the psychology of visual perception: how we see things. The computer is ideal
for this: it can set up carefully controlled pictures (“stimuli” as the psychologists say) to
bring out specific features of the perceptual mechanism. (See, I'm getting the hang of the
jargon already, and we’ve barely got started.)

AFTERIMAGES

If you stare at a bright object for long enough, the cells in the eye that receive the light
become ““tired”” and cease to respond so strongly to it. This results in the formation of
“afterimages”: dark spots the same shape as the original bright object. The effect wears
off after a few seconds.

Suppose the original object is not only bright, but coloured. How do the afterimages
behave? The following program lets you find out, using the Spectrum to generate and
maintain the original stimulus.

10 PRINT AT 19, 0; “Afterimages”
20 PRINT “Stare at the square”
30 INPUT “Colour?”, p
4 FORi=1TO6
50 PRINT BRIGHT 1; PAPER p; AT8 +i,13;“00 00007
60 NEXTi
70 PAUSE 500
8 CLS

% GOTO10

When you RUN this, input the colour by pressing the corresponding number in the top
row of keys. A bright square will appear: stare at it, trying not to move your eyes off it.
When it disappears, you should see a fuzzy, phantom square, which fades in a few
seconds. (If you don’t, or it’s very pale, try increasing the PAUSE to about 1004.)

If your eyes are working like mine, the colours you see should be roughly these:

Original Afterimage
black white

blue yellow

red cyan
magenta green
green magenta
cyan red

yellow blue

white black

Well, OK, maybe the “black’ looks grey, and the red is a bit brownish; but it should be
close.

Notice that the codes for the original and the afterimage addupto 7 (e.g. red + cyan =
2 + 5 ="7). This means that the image colour is complementary to the original: it contains
precisely those colour signals that are not present in the original.

Why? Presumably because overexposure to these has reduced the eye cells’ capacity
to respond to them, which shows up as a kind of exaggerated response to the comple-
mentary colours.

In ordinary circumstances, you won’t notice afterimages much (unless you look too
close to the Sun, which is dangerous if done for more than a split second, so don’f). This
is because the eye is constantly hopping from one point to another. (It’s called saccadic
movement.) But this Spectrum experiment shows them up quite vividly. (Don’t stare too
long at the Spectrum screen, either!)

THE HERING ILLUSION
This dates from 1861, and is named after its discoverer Ewald Hering.

10 FORi=5TO 255STEP 12
20 PLOTi,0: DRAW 255 —2+i,175
30 NEXTi
50 FORi=S5TO 175STEP 12
60 PLOT®,i: DRAW 255,175 — 2 i
70 NEXTi
100 INPUT “Spacing?”’, q
110 PLOT®,87 — q: DRAW 255,0
120 PLOT®,87 + q: DRAW 255,0
It draws a bunch of rays through the centre of the screen. Then it asks for an input. Try
something between about 10 and 20 first. Two lines appear. They look curved (although
the curvature of the TV screen can spoil the illusion a bit).

However, it’s clear from lines 110 and 120 that they must be straight. The other lines
fool the eye.

Try this with different values for the “Spacing” INPUT, and different INK/PAPER
combinations. What values give the best illusion?

THE WUNDT ILLUSION

It took until 1896 for someone to try the obvious, and make the lines curve the other way.
The genius responsible was Wilhelm Wundt, the first man to suggest that psychologists
might care to carry out experiments. Big Oak Trees and all that . . .

10
20
30
40
50
60
70
100
210
220

FORi= —125TO 125 STEP 10

PLOT 127, 9: DRAW i, 87: DRAW —i, 88
NEXT i

FORi=2TO 87STEP 10

PLOT @, i: DRAW 127, —i: DRAW 128, i
PLOT®, 175 — i: DRAW 127, i: DRAW 128, —i
NEXTi

INPUT “Spacing?”’, q

PLOT®, 87 — q: DRAW 255, 0

PLOT®, 87 + q: DRAW 255, 0

It works very much the same way. I reckon the illusion is more effective on the TV screen
than Hering’s version: what do you think?

THE POGGENDOREF ILLUSION

Have you noticed how they’re all German? Johann Poggendorf proposed this one in

1860.

10
20
30
40
50
60
70
80

FORi=0TO20

PLOT 20, 70 + i: DRAW 200, 0
NEXTi

PAUSE 50

PLOT 20, 10: DRAW 200, 130
IFINKEYS$ = “” THEN GO TO 60
OVER 1: PLOT 113, 70: DRAW 30, 20
OVER

This draws a rectangular block, and two lines radiating out from it. They look as if
they’re offset.

Figure 8.1 The Poggendorf Illusion: is the whole line straight?

47

However, if you press a key, a white line is drawn between them, to show that they are
aligned with each other: the whole line now looks straight.
Hmmm . ..

THE MULLER-LYER ILLUSION

At first I thought it was two Germans . . . but no: Franz Miiller-Lyer had a double-
barrelled name (Doppelname, as they say).
10 PLOT 40, 130: DRAW 180, ¢
20 PLOT 40, 60: DRAW 180, 0
30 PLOT25,45: DRAW 15, 15: DRAW —15, 15
40 PLOT235,45: DRAW —15,15: DRAW 15, 15
5@ PLOTSS, 115: DRAW —15,15: DRAW 15, 15
60 PLOT 205, 115: DRAW 15,15: DRAW —15, 15
70 IF INKEY$ = “” THEN GO TO 70
8 FORt=1TO7
9 PLOT40,140 — 10+ t: DRAW @, —7
100 PLOT 220, 140 — 10 = t: DRAW @, —7
110 NEXT't

You've seen this one. There are two arrows, with heads pointing different ways. The
bottom one is clearly longer. Oh yes? Hit any key; watch the dotted lines . . .

> & N
y & N
y & D\ W
p - >
N = ¢
. N y o
u:. v &
AN g
N
. >
N v
Ay v A
N N A
N Sy .
2z o A
vV A A
o Ng.
v 4 Ny
/ N

Figure 8.2 The Miiller-Lyer Illusion: are the lengths the same?

THE WERTHEIMER ILLUSION
Due to Max Wertheimerin 1912 . . .

10 PAPER 0: INK 6: BORDER 0: CLS
20 INPUT “Pause?”, p

25 INPUT “Number?”, n

30 FORt=1TO?20

35 FORj=1TOn

40 PRINTATS8,15+2+*(j—5);«“0”

45 NEXT

50 PAUSEp

55 FORj=1TOn

60 PRINTATS8,15+2+*(j—5);“M”

70 PRINT AT 14,15+ 2+ (j —5);“0"

75 NEXTj

80 PAUSEp

8 FORj=1TOn

99 PRINTAT14,15+2+*(j—5);“®”

95 NEXT |

100 NEXT't
When you RUN this, you'll be asked for a PAUSE—anything between 1 and 100 is
fine—and a NUMBER. I suggest you input 1 for the first few tries.

The screen displays a yellow square (or two). If PAUSE is small, you’ll see two

(possibly flashing) lights. If PAUSE is large, you’ll see one light for a while, then the
other. But, if PAUSE is in between, what you see is one light, bouncing up and down.

(Try PAUSE = 35.) You can see this effect with the fog-warning lights on British
motorways.

If you try NUMBER at values bigger than 1 (and not more than 10 or 12) you'll see a
whole array of lights. What you perceive depends a bit on the fact that they aren’t
flashing quite in synchrony: the BASIC program takes time to go round a loop.
Experiment.

This illusion is important for computer-games: moving graphics wouldn’t work with-
out it. For that matter, neither would TV or motion pictures. No Logie Baird, and no
Yogi Bear.

THE SCHWINDEL ILLUSION

... Due to Hans-Wilhelm Schwindel in 1872. Well, actually, no: I invented it myself, but
you’d never have guessed—unless you knew that “Schwindel” is German for “fake”
(hence “swindle”). No doubt half a dozen Germans invented it half a century ago, but
not on a Spectrum.

10 OVER1

20 POKE 23607, 50

30 FORi=1TO 704: PRINT CHRS (35 + 10 * RND); : NEXT i

40 POKE 23607, 60

5@ LETi= 125+ RND:LET j= 85+ RND

60 LETil =125+RND:LET jl1 =85+ RND

70 PLOTI, j: DRAWIL, j1

80 PAUSE20

9% GOTOSO

This draws a random screenful of hi-res dots. (Don’t BREAK in the middle of this bit, or
you’ll get weird messages. If you do BREAK, enter POKE 23607, 60.)

49

50

Then it starts drawing lines. You'll see the lines go in; but once they’re in, you’ll totally
lose track of where they were. The eye is detecting changes in the random screen, but it
can’t hold the resulting image in any detail. Something to do with the way we perceive

textures.

For a variant, try circles. Change lines 50—90 so that they read:

50
60
70
80
90

LETi= 50+ 150 RND: LET j = 40 + 99 + RND
LETr =20+ RND + 10

CIRCLEi. .t

PAUSE 20

GO TO 50

Again, you'll see them going in; but the image won't last. If you're not even convinced
the circles are going in at all, add a colour-change:

3

INK 3

Now you’ll see that something’s changing: but you won’t start to see the circles until a
goodly part of the screen has gone magenta. The colour change seems to impress the eye
(and brain) even more than the change in the individual pixels, and it obscures the latter
almost entirely.

Most commercial uses of computers require
large quantities of data. These are stored
on disc or tape in the form of . . .

9 kiles

What is a file, in the computing context? Scientists have a disconcerting habit of taking a
word in common use and giving it a subtly altered meaning to suit their purposes.
Computer scientists have done just that with the word file. To them, the word implies a
(usually) large collection of data items related to some specific topic.

So for instance, an estate agent would hold a file consisting of all the properties which
he has available for sale. He should beware of saying to his secretary, “Bring me the file
on 36 Acacia Avenue, please,” within earshot of a computer man because he will be
smugly told that he is misusing the word, since he only really wants one item of the file,
which the computer man calls a record. Our estate agent may retort, with considerable
justification, that he was using the word “file”” before the computer man was thought of.
The computer man will, wisely, ignore this line of argument, and camouflage the fact
that he hasn’t responded to it by remarking that a single feature of a record, such as, in
this case, the current owner of 36 Acacia Avenue, or the price being asked for the
property, is called a field. At this point the estate agent will almost certainly disengage
himself from the argument, since he doesn’t see much percentage in selling fields,
particularly without outline planning permission.

Let’s look at another example of a file of a more personal nature. Suppose you wanted
the details of your record collection kept. The file is the sum total of all the information
about this collection. A record of the file is, coincidentally, information about one
record (thing that whirls round at 33%3 r.p.m.) in the collection. We’ll assume for
simplicity that all the (gramophone) records are of the pop variety, and therefore have
twelve separately titled tracks. We’ll worry about what to do with the Brandenburg
Concertos later. So each file record might consist of the fields given in Table 9.1.

Table 9.1
Field No. Description No. of characters (max)
1 Artist 30
2 Date purchased 6
3 Track 1 title 20
4 Track 1 length (minutes) 5
5 Track 2 title 20
6 Track 2 length (minutes) 5
7 :
8 :
and so on
25 Track 12 title 20
26 Track 12 length (minutes) 5
Total no. of characters/record: 336

S

Each of the fields described in the table has a fixed length. So, for instance, if the artist
is “Pink Floyd”, which only occupies 10 characters (including the space between the
words) a further 20 spaces will have to be added to make up the standard 3@ symbols.
Thus “30” is just a reasonable guess as to the maximum number of characters which the
artist’s name might take up. It should be adequate for most purposes; even “Bonzo Dog
Doo-Dah Band” fits OK. But not “Dave Dee, Dozy, Beaky, Mick and Titch”.

Now, you may object that a lot of memory is going to be wasted this way, and that it
would be better to allow fields to have variable lengths, and to delimit each of them with
some special character. To that, I can only answer that your argument is sound but that
to do things like that would make the programming much more difficult than I am
prepared to make it, so there. Anyway, in at least some cases, there is no question about
the field length. For example, the “Date purchased” field always contains exactly 6
characters: 2 for the day, 2 for the month and 2 for the year, as in $31178 for “3rd
November 1978”. Similarly, the duration of a track is almost fixed. I've allowed for 2
decimal places, so that the time can be quoted as 3.16 minutes, for instance. That only
takes up four characters, however (including the decimal point), and I've allowed five.
This is just to guard against the possibility that a track is ten minutes (or more) long.

As I've shown, the whole record occupies 336 characters using these assumptions. So
if you’ve got 200 records in your collection, the file is going to occupy 67200 bytes, which
is a good deal more than the Spectrum has space in memory for at one time!

This is a typical feature of computer files; by and large we expect them to occupy more
space than there is available in main memory. That means they have to be held on some
backing store, and for our purposes, that means cassette tape.

FILES ON TAPE

What form should the file on the tape take?

Before answering that question, it will be helpful to think a little about how we’re
going to use it when we’ve got it. One thing that’s going to be necessary fairly frequently
is to revise the file to include newly acquired records, and to delete discarded ones. This
is known as file maintenance.

Now, we can’t actually delete something from a small segment of cassette tape. The
only way to do the job is to copy the entire file, except for the bit we want to delete, from
one tape to another. The original tape is unaffected, but the new one no longer contains
the deleted record. Figure 9.1 indicates how this can be arranged, at least in principle.

Play Record

Old Updated
file file

N /

Ear Mic

Spectrum

Figure 9.1 Use of two cassette-recorders to handle taped files.

So we need two tape recorders, one in “play” mode (connected to the “ear” sockets),
the other in “record” mode (connected to the “mic” sockets).

52

What are the programming considerations here? In outline, the code is:

Read a record.

If it’s the terminating record then end.
If it’s the one to be deleted then go to 1.
Write a record.

Gotol.

AL AT

Now, if the tape is left running, there’s no guarantee that by the time steps 2, 3 and 4 have
been executed the next record hasn’t passed through, so obviously, every time a record is
read, the tape will have to be stopped. Similarly, there’s no point in leaving the tape
being written to running when there’s nothing being written to it. Since it’s going to take
less than 2 seconds to read or write a record, the starting and stopping of tapes is going to
get pretty tedious pretty quickly.

BLOCKS OF DATA

So what we need is a compromise. We can’t hold the whole file in memory and we don’t
want to deal with it record by record, so why not split it into blocks of so many records
each, so that a block can be comfortably held in memory at one time? For a 16K
Spectrum, about 9K is available to the user. If the program occupies 1K, we can afford
blocks of about 4K in size so that, at any given time, there is a 4K block which has been
read in (to an input buffer) and whose contents are being transferred to an output buffer
for subsequent writing out to tape. So now our organization looks like Figure 9.2.

Play Record

X e

Ear Mic
. Input Output
1D e P buffer buffer
4K 4K — P
Program
IK

Figure 9.2 Arrangement of memory for file-handling.

For the record collection example, we’ll be able to get 12 records per block.
So far as the user is concerned, it’ll be convenient if he doesn’t have to think about the
housekeeping aspects of this arrangement. In fact, it’ll be simplest if it appears as though

53

single records are being read and written. We’ll need two subroutines for this, “read a
record” (read) and “write a record” (write). Most of the time, these routines won’t
actually be doing any reading or writing at all, but simply transferring data from the input
buffer or to the output buffer. However, when the input buffer is empty it’ll be necessary
to read the next block, and conversely, when the output buffer is full, we’ll have to write
a block. We’ll call these routines getblock and putblock.

There are a couple of other considerations: first, we need two pointers, ip and op, to
show how full each buffer is at any time. These will have to be set up to zero to start with,
so we’ll have a routine called initcfs (for “initialize cassette file system’) to do this, and

" any other initializations which turn out to be necessary. Second, we haven’t thought

54

about how the file should be terminated. Obviously, there’s no guarantee that the file is
exactly so many blocks long, so that we have to have some way of forcing the activation
of putblock when a file delimiter of some kind is recognized. We’ll adopt the convention
that field 1 of the terminating record is “‘cfsend” (on the grounds that it’s very unlikely
that these letters are going to mean anything within a file), and that the other fields of this
record are insignificant, so that, in practice, they may contain anything.

One more thing; we haven’t said exactly how the input and output buffers are to be set
up. Clearly, they are both string arrays. We’ll allow the user the facility of deciding how
big the buffers should be for a particular application. The simplest way of doing this is to
prompt him for the number of records per block (nrb) and the number of bytes per
record (bpr). Then we dimension two arrays:

DIM i$ (nrb, bpr) [input buffer]
DIM o$ (nrb, bpr) [output buffer]
This can be done in initcfs.

Armed with these ideas, we can start to look at the way read and write will work. In
outline they are as follows.

Read

IF ip = @ OR ip > nrb THEN getblock

IFi$ (ip) = “cfsend” THEN PRINT “Attempt to read past end of file”: STOP
Transfer i$ (ip) to r$

Increment ip

RETURN

AN T S A

The action of the pointer ip needs a little explanation. To start with, initcfs will set it to
zero, so of course that means the buffer is empty. If a call to read occurs now, we’ll have
to invoke getblock. This is catered for in line 1. getblock will have to setip to 1, to indicate
where the first record to be read is, and this is then passed to r$ (line 3) for use by the
calling program. Now we increment ip so that, on the next call to read, it’s the second
record that is transferred to r$. This is fine until all the records of the block have been
transferred, when ip will point beyond the end of the array (i.e. ip is greater than nrb).
That’s why there are two conditions under which getblock is called in line 1.

Write

1. Increment op

2. Transfer 1$ to o$ (op)

3. IF op = nrb OR r$ = ““cfsend” THEN putblock
4. RETURN

Line 1 increments the pointer op straight away, because initcfs sets it to zero, and
that’s before the beginning of the output array 0$. So, on the first call, what’s in r$ will be
transferred to 0$ (1) which is what we want. We know the buffer is full if op = nrb but,
also, we want to force the execution of putblock if our end of file marker has been
passed. That’s why both conditions are tested for in line 3. Incidentally, putblock has to
reset op to zero, so that it gets reset to 1 at the beginning of the first call to write after a call
to putblock.

getblock and putblock are pretty straightforward too, but we need to overcome one
more problem before outlining them: we haven’t thought about how to name the data
which are going to be saved. We could give each block the same name, but this could
easily get confusing and is asking for trouble. A better technique is to allow the user to
provide names for his files (within initcfs again) and then alter the name automatically
within putblock, so that every block has a different number. For instance. if the user calls
a file “fred”. the blocks will actually be saved as fred®, fredl, fred2, etc. Similarly,
getblock will have to keep a record of the block count on input. Again, the blockcounts
will be initialized in initcfs.

So the outlines are:

getblock

PRINT “turn on PLAY recorder”

LOAD input file + inblockcount DATA i$ ()
PRINT ““turn off PLAY recorder”
LETip=1

LET inblockcount = inblockcount + 1
RETURN

putblock

PRINT “turn on RECORD recorder™

SAVE output file + outblockcount DATA o$ ()
PRINT “turn off RECORD recorder”

LETop =10

LET outblockcount = outblockcount + 1
RETURN

Note that inblockcount and outblockcount are going to be slightly trickier to handle
than it appears, because part of the time they’re used as strings to be added to the
filenames. and part of the time they are numbers to be incremented. Also we’ve now got
quite a few strings lying about which won’t be easily identifiable because they can only
have single character names, so before we write the actual code here’s a list of string
names and functions.

Stringname Function

i$ input buffer

o$ output buffer

r$ record which user apparently writes to or reads from

f$ input file name

g$ output file name

m$ block number to be appended to input or output file name

THE CODE

We’ll start the cassette file system from 9500 onwards, allowing 100 for each routine, so
initcfs is at 9500, read is at 9604 etc. So we’ll need lines 1 to 3:
1 LET initcfs = 9500: LET read = 9600
2 LET write = 9700: LET getblock = 9800
3 LET putblock = 9900
in any program which uses cfs.
Let’s write initcfs:
9500 LETip=0:LETop=20
9510 LET inbc = @: LET outbc =0 [block counts]
9520 INPUT “input file name™’; f$
9525 INPUT “output file name’’; g$
9530 INPUT “no. of bytes per record”’; bpr
9549 INPUT “no. of records per block”; nrb
9550 DIM i$ (nrb, bpr): DIM o$ (nrb, bpr)
9560 RETURN

No problems so far. read should be pretty straightforward:

9600 IF ip = @ OR ip > nrb THEN GO SUB getblock

9610 IFi$ (ip) (TO 6) = “cfsend” THEN PRINT *“‘attempt to read past end
of file”: STOP

9620 LET $ = i$ (ip)

9630 LETip=ip +1

9640 RETURN

and so should write:

9700 LETop =op + 1

9710 LET o$ (op) = r$

9720 1F op = nrb OR r$ = “cfsend” THEN GO SUB putblock

9730 RETURN
They’re pretty well identical to the outline programs, aren’t they?

getblqck and putblock require a little jiggery-pokery to handle the string-to-numeric

conversions:

9800 LET m$ = STR$ inbc

9810 PRINT “Turn on PLAY recorder”

9820 LOADf$ + m$ DATAi$()

9830 PRINT “Turn off PLAY recorder”

9840 LETip=1

9850 LET inbc = inbc + 1

9860 RETURN

9990 LET m$ = STRS outbc

9910 PRINT “Turn on RECORD recorder”
9920 SAVE g$ + m$ DATA o$ ()

9930 PRINT “Turn off RECORD recorder”
9940 LETop=0

9950 LET outbc = outbc + 1

9960 RETURN

TESTING

Now what’s needed is a little program to test that it all works. We don’t want to have to
key in huge piles of stuff, so we’ll set up small buffers and get the program to generate its

own file. The simplest thing is just to generate a sequence of ascending numbers.
This should do:

10 GO SUB initcfs

20 FORn=1TO 100
30 LETr$=STR$n
40 GO SUB write

50 NEXTn

60 LET1$ = “cfsend”
70 GO SUB write

80 STOP

Run this. The first thing that happens is that initcfs asks you for an input filename. Of
course, there isn’t one because we haven’t created a file yet—that’s what we’re about to
do. So just give it some arbitrary name, “null” for instance. Now you’re asked for the
output filename, which you might call “test” or ““fred” or whatever. Then, initcfs asks for
the number of bytes per record. In this case, it’s never more than 3 (when n = 100) but
beware! “cfsend” occupies 6 bytes, so all records must be at least 6 bytes long. (If you
don’t like that, you can always use some special character. Watch it, though—control
characters may have odd effects!) Finally, initcfs wants to know the number of records
per block. Choose 20, for reasons which will become clear in a minute.

Now the beast does a bit of processing until it’s filled the output buffer, when, of
course, putblock will be called. So you see displayed on the screen the message:

“Turn on RECORD recorder”

Since the next thing is a SAVE command, you then get the usual prompt to switch on the
recorder and then hit any key. So if you wished, you could dispense with line 9910. The
only disadvantage with this is that the standard Sinclair prompt does not point out that
the tape must be in RECORD mode. Incidentally, when you’re handling one input and
one output file you seem to require more than a natural number of hands. Things can be
made slightly simpler by leaving the two recorders in PLAY and RECORD modes
respectively, and controlling their movements using the PAUSE button (provided you
have one, of course).

Meanwhile, back at the program, as soon as the block has been saved, you get a
prompt to turn off the recorder. In this case, because the buffer is very rapidly filled, you
almost immediately get another “Turn on RECORD recorder” message, so it’s hardly
worth the bother. All that happens if you don’t turn off between block SAVEs is that you
get slightly longer gaps on the tape between blocks.

57

58

Altogether, six blocks will be saved by the program, since exactly five are needed for
the numbers 1 to 100, which means that a sixth is required just to hold “cfsend”.

Now we need to check that the file has indeed been saved correctly. The simplest thing
to do is to change lines 20, 30 and 40 like this:

20 GO SUB read
30 PRINT$
40 GOTO20

and RUN again, with the tape in the PLAY recorder. What should happen is that after
initcfs has asked for the file details (this time it’s the output file which is null, remember)
the system prompts for the PLAY recorder to be turned on, getblock then reads 20
numbers which it passes to read, which in turn passes them to r$ one at a time, after which
they’re printed, and a prompt is issued for the recorder to be turned off. And that’s what
does happen, with a couple of additions. Firstly, of course, the Spectrum displays the
filename of the file it’s reading, so we should see:

character array: fred@

first time round.

SCROLLING PROBLEMS

This is indeed what happens, but there is a small fly in the ointment: the scrolling
mechanism now gets in the way. The system prompts you with ‘“‘scroll?”” and when you
respond affirmatively it immediately comes up with:

“Turn off PLAY recorder”

So if you're slow to re-enable scrolling, you could find the tape halfway through the next
block before the program has started to read it. (This problem is particularly obvious
with a block size of 20, which is why I chose it.) This isn’t a total disaster because the
Spectrum will only try to read the block it’s supposed to be reading next, so you can
always rewind a bit; but that is rather tedious. A better alternative is to disable paging
altogether during calls to getblock.

Recall from Chapter 6 that there’s a system variable called SCR-CT at 23692 which can
be made to do this. It holds the number of lines (plus 1) that will be printed before the
next “scroll?”” prompt is issued. So we could set this to 255 (the largest possible)
whenever getblock is called by adding the line:

9825 POKE 23692, 255

It must go after the LOAD, because that resets SCR-CT to 1.

So now every call to getblock allows 256 lines of output before a ““scroll?”” prompt will
appear. Whether this is adequate will depend on the application. In this case it’s more
than enough, but it might be safer to include the statement in read as well as getblock
since this routine is going to be called more often. Even then, the effect isn’t absolutely
guaranteed since it depends how much the user program is writing to the screen between
reads, but under normal circumstances there should be no problem.

SO FAR SO GOOD. ..

We should pause for breath here, and review what’s been going on. First note that initcfs
has been used in two distinct ways:

1. to create a file to be written to;
2. to open a file which already exists, to be subsequently read.

So we could have written two separate routines instead of initcfs, called create and open,
and there is indeed something to be said for this approach, since as we’ve seen, if we
don’t happen to want an input and an output file we have to allocate dummies to keep

initcfs happy. Secondly, the user is being asked to handle the termination of files himself.
In other words he has to know that the file delimiter is “cfsend”. We could have written
another subroutine called close which would do the job automatically, so that lines 6@
and 70 of our test program could be replaced by:

60 GO SUB close

and close would just be:

LET r$ = “cfsend”
GO SUB write
RETURN

MICRODRIVE

Now, if you look at the Spectrum keyboard, you’ll find the keywords CLOSE # and
OPEN . These are the equivalent commands to those I've been discussing for files held
on the microdrives. (There’s no CREATE $#, so OPEN # must do both jobs, just as
initcfs does.) The equivalents for read and write are INPUT 4t and PRINT #. Everything
else (i.e. the organization of file blocks and so on) is handled by the Spectrum operating
system and so the file structure on the microdrives is just as transparent to the user as cfs
is. Actually, the microdrive handling routines have to do a lot more than read, write,
getblock, putblock and initcfs do, but the principles are similar.

AUTOMATIC CONTROL

There’s a question which has probably been niggling you for some time: “Could we get
the Spectrum to control the cassette motors automatically?”.

The answer is “yes”, and it isn’t very difficult. You need recorders which have remote
start jacks (most do). You also need a parallel I/O port and a couple of 5 volt low current
relays. The relay contacts are used to complete the remote motor start circuits and their
coils are driven from any convenient two bits of the port. Then, instead of printing
messages, we simply POKE the port with a bit pattern (using BIN) which turns the
appropriate line on or off. Appendix B gives hardware details. Unfortunately SAVE still
automatically sends its prompt to switch on the recorder and waits for a key to be hit. So
total automation is still tantalizingly just over the horizon.

USING FILES

Now, you may recall that the impetus for all this effort was the idea of writing a program
to handle our record collection details, and that seems to have got lost in the welter of
details about utility subroutines for handling the file system. But, of course, now that
we’ve got them, it’s going to make the main program a lot easier to write.

There are three basic functions of any file system:

1. Create the file from scratch.
2. Maintain it by doing necessary additions and deletions.
3. Search the file for some desired entry.

For simplicity we’ll write these as separate programs, although it would be a simple
matter to link them together via a menu (see our book Machine Code and Better Basic).

The create routine starts pretty straightforwardly. There’ll be a call to initcfs in which
the input file will be set to “null”, the output file to “reccol” (say), the number of bytes
per record to 336, and the number of records per block to something like 5 to allow a
comfortable space for the program.

Now we hit the only serious problem in this routine: it is to set up each record in a
convenient way for the user. For instance, we know that the ““artist” field is 30 bytes long,
but we don’t want the user to have to key in “ABBA” followed by 26 spaces. So we’ll

59

have a subroutine called inrec which handles the input of a single record in a user-friendly
wa’%{i}e create program then looks like this:
100 GO SUB initcfs
110 GO SUB inrec
120 GO SUB write
130 INPUT “Any more? (y/n)”’; q$
149 IF g$ = “y” THEN GO TO 110
150 GO SUB close [assuming you’ve implemented close]
160 STOP
Now we can worry about inrec. Let’s set up a string array, a$, which is to hold the record
as it builds up. So if inrec is at 8000:
8000 DIM a$ (336)
Now prompt the user for the first required piece of data, and put it in the right place:
8010 INPUT “Artist”; a$ (TO 30)
Then
8020 INPUT “Date of purchase”; a$ (31 TO 36)

After that we want to handle 12 tracks in the same way:

8030 FORt=1TO 12
8340 PRINT “track™;t

Now we want to write something like:
8060 INPUT “title”’; a$ (begin TO end)

having worked out what “begin” and “end” are in line 8050.

Obviously “begin” and ‘“‘end” change depending on what track we’re on at the
moment. Let’s write down a short table of their values to give us an idea about the
relationships involved.

Track (t) Begin End
1 37 56
2 62 81
3 87 106

So begin =37 +25*(t— 1)
andend =56 +25x*(t—1)
So:
8050 LETbegin=37+25*(t—1):LETend =56 +25%(t— 1)
The track length goes fromend + 1toend + 5:
8070 INPUT “length”; a$ (end + 1 TO end + 5)

And then:

8080 NEXT't
Pass the result to r$:

8099 LETr$=a$
and that’s it:

8100 RETURN

MAINTENANCE

What about the maintenance program? Again, it will start with a call to initcfs, and, for
the first time, we want to define both input and output files. The input file is “reccol”,
and we need to identify the output file as being an update on this; for instance, “reccola”
would do. Subsequent updates might be called “reccolb”, “reccolc” and so on, in the
manner of car registrations. Or, you might prefer to provide date information, and call
the file, say, rc982, for “record collection as at September ’82”. In any event, you need
some formal system. Otherwise it’s too easy to pick up the wrong file and modify the
wrong information.

We'll keep life pretty simple to start with, and allow the user to make just one addition
or one deletion from the file on one run of the program.

So we have:

10 GO SUB initcfs

110 INPUT ““add or delete (a/d)?”; q$

120 IF g$ = “a” THEN GO SUB add: STOP
130 IF q$ = “d” THEN GO SUB delete: STOP
140 PRINT “Enteraord”

150 GOTO 119

DELETE

Now for the delete routine (because it’s easiest). Suppose it’s to run from 6009 onwards.
We need to dimension a string array to hold the artist name and date of purchase to
identify the record uniquely. Of course, this assumes you haven’t bought two LPs by the
same artist on the same day. This kind of ambiguity often causes problems in file design,
and the usual way out is to add an extra field called a key, at the beginning of eachrecord,
which contains a number used only for this one record. A bank account number is an
example of this. Anyway, assuming that we’re OK, we’ll need:

6000 DIM a$ (336)

6010 INPUT “Artist”’; a$ (TO 30)

6020 INPUT “date purchased’; a$ (31 TO 36)
which sets up the required string in just the same way as the inrec routine we wrote just
now. Fine; now all we have to do is to pull records in from the input file, see if they match
the one we want to delete and, if not, shovel them out to the output file:

6030 GO SUB read

6040 IF r$ (TO 36) = a$ THEN GO TO 6030

6050 GO SUB write

6060 GO TO 6030

61

62

Simple enough? Unfortunately it’s too simple by half. Let’s think about what happens
close to the end of the file.

/_’—_\/
rec 179
rec 180 rec 179
cfsend rec 180
./"_/
input output
buffer buffer

We'll suppose we’ve just read record 180, found that it’s not a candidate for deletion,
and soit’s been transferted to the output buffer with the write routine. Now read is called
again and “cfsend” is found. read says that’s beyond the end of the file, and it halts with
an error message. Now you may say ‘“That’s no real problem, because we’ve finished at
that stage anyway”. But we haven’t quite, because the output buffer still has records 179
and 180 in it which haven’t been output, and there’s no end-of-file marker on the output
file, so mysterious things are guaranteed to happen if we try to read our newly created
file. Incidentally, when this kind of thing occurs, the output buffer is said not to have
been flushed, a picturesque piece of jargon.

There are a number of ways out of this hole that we—all right I—have just fallen into.
Perhaps the simplest is to have two end-of-file markers, one for the benefit of cfs (cfsend)
and one for the user’s benefit. Let’s use “}}”.

So we need to rewrite the close routine to generate both end-of-file markers:

9749 LETr$ =“})”
9750 GO SUB write
9760 LET $ = “cfsend”
9770 GO SUB write
97890 RETURN

(Of course, we have to identify close for BASIC’s benefit; we could edit line 3:
3 LET putblock = 990@: LET close = 9740)

Now we can modify the delete routine to test for the user’s end-of-file marker, and close
the output file when it’s found:

6000 DIM a$ (336)
6010 INPUT “Artist”; a$ (1 TO 30)
620 INPUT “date purchased”; a$ (31 TO 36)

6030 GO SUB read

6040 IFr$ (TO2) = “}}” THEN GO SUB close: RETURN
6050 IF r$ (TO 36) = a$ THEN GO TO 6030

6060 GO SUB write

6070 GO TO 6930

Notice that, in lines 6040 and 6050, only the first 2 and first 36 bytes of r$ respectively are
used for the comparisons. This is important, and easy to forget if you’re not careful. The
point is that r$ is 336 bytes long and, even if it’s empty, ““}}”” isn’t the same thing as “}} +
334 spaces” as far as BASIC is concerned.

ADD

Now for the addition routine. We haven’t said anything yet about the order in which the
records are stored on the tape. Let’s assume for the minute that they are alphabetical by
artist name, but where there is more than one record by the same artist, the order is
undefined. So our problem can be stated broadly like this:

Input addition.

Read a record.

If it’s end of file then close file: RETURN.

If artist name (record) is before artist name (addition) then write record: go to 2.
Write addition.

. Write record.

. Goto2.

In other words we do exactly what we would do with a card index: make out a new card,
go through the file until we find the right alphabetical niche, pop it in. The only
difference is that, in the computer case, we're physically moving records from one place
to another (input to output) every time we read them. It’s as if we had two card index
trays, and the rules were that, as soon as we’ve read one in the “input” tray it has to be
transferred to the “output” tray.

There is, however, a subtle bug in our algorithm. Suppose that the last record in our
collection is by Suzi Quatro, and we wish to add a Yardbirds album. The procedure
works through the file, transferring records as it goes, finally dealing with the Suzi
Quatro LP. Then it sees an end of file marker, so it closes the file, leaving the addition
details still in memory! So we need to modify step 3:

3. Ifit’s end of file then check: close file: end.

check will be a routine which checks to see if the additional record has been written out
yet, and, if it hasn’t, check will write it.

Let’s write the add routine from S®3) on. First we have to input the additional record.
But we’ve already got a routine which accepts a full set of record details: inrec. So call
that. No point in reinventing the wheel . . .

N AR W~

5009 GO SUB inrec: LET transfer =

5019 GO SUB read

5020 IFr$ (TO?2) = “}}” THEN GO SUB check: GO SUB close: RETURN
5030 IF r$ (TO 30) < a$ (TO 3¢0) THEN GO SUB write: GO TO 5010

A couple of things need some explanation before we get too far. First, the “LET transfer
= 0" in line 500D. check is going to need some way of knowing whether or not the
additional record has been transferred to the output file. As soon as the addition has
been accepted, we set “‘transfer” to zero. When the addition is transferred to the output
file, we’ll set transfer to 1. So check only has to test “transfer” to see if it’s zero. If itis, the
addition has yet to be output.

63

Second, line 530 compares two strings; r$, which has just been returned by read, and
a$ which was set up by inrec. (r$ was also set by inrec, but this was immediately
overwritten by read.) The use of the “less then” symbol, here, has the meaning ““alpha-
betically precedes”, so dealing with strings in alphabetical order presents no problem.

To continue:

5G40 LETDbS$ =r$ [save last record read]

5050 LETr$ = a$ [transfer addition to r$ for writing . . .
5060 GO SUB write and write it]

5070 LET transfer = 1 [signal that it’s been written]

5080 LETr$ = b$ [put last record read back inr$. . .
5099 GO SUB write and writeit]

5100 GO TO 5010
Now, finally, to write check (from 5200 on):

5200 IF transfer = 1 THEN RETURN [no action necessary because addition

has been output]

5210 LETr$ = a$ [transfer addition to r$
5220 GO SUB write and write it]
5230 RETURN

o =k Cosgrne Actually, we advertised for

someone With experience in
dealing with files

Project

All the foregoing assumes that only one alteration to the file is to be made. If you go out
on a mad record-buying spree and get 15 new records, and then donate 4 of your old ones
to Oxfam, you’ll have to run the file maintenance program 19 times to get the file up to
date!

Try to write a maintenance program which will accept all alterations at the beginning.
You’ll have to read all the additions into an array and all the deletions into another. Then
you’ll have to compare each record read in with each of the entries in the two arrays to
decide whether to delete or copy the record, or make an insertion. Note that each
addition will need its own transfer flag (i.e. there’ll have to be a transfer array rather than
a single variable). Note also that the order in which the additions are entered is
unimportant, because the program will search for any addition in the array which should
be inserted. Don’t forget to allow for the fact that more than one insertion may be
necessary between two existing records. It’s an interesting thought that if you create the
file with just a couple of records, and then use this maintenance program to add the rest,
the file will automatically be generated in alphabetical order!

SEARCHING THE FILE

Having spent a considerable time creating this file, we ought to find some use for it.
Suppose that we want to make up a tape of background music for a party. We want a
range of tracks all about 3 minutes long. So what we would like is a list of tracks which last
between 2.7 and 3.3 minutes, for instance.

So we want a program which does this:

print artist, date of purchase
for all
records
if duration in range 2.7 to 3.3 then print track title
for all
tracks
L
This is pretty simple:

100 GO SUB initcfs

110 GO SUB read

120 1Fr$(TO?2) = “}}” THEN STOP

130 PRINT r$ (TO 30)

140 PRINT r$ (31 TO 36)

150 FORt=1TO 12

160 LET begin =57 + (t — 1) 25

170 LETd = VAL 1$ (begin TO begin + 4)

180 IFd<2.70Rd > 3.3 THEN GO TO 2

199 PRINT r$ (begin —20 TO begin —1)

200 NEXTt

210 GOTO 119
Notice that, since we’re only reading a file, there’s no need to do a close operation when
the end of it is detected at line 120.

The only tricky bit here is evaluating the duration of each track as a number. First we

have to find the relevant portion of r$ (line 160). Then it’s necessary to create a numeric
value from this string (line 17@) so that comparisons between numbers can be done in line

180. Of course, the 2.7 and 3.3 could just as easily be variables entered at the beginning
of the program. That would allow other questions to be asked, like:

“List all tracks at least 4.5 minutes long” (by making the low boundary 4.5 and the
high one something unreasonably large: 9999, for instance)

Or:

“List all tracks exactly 3 minutes long” (by making both boundaries 3)

65

66

Project

Identifying other specific features of the file is just as easy. Try the following:

1. List all tracks by a given artist.

2. Asfor (1), but purchased between two given dates. (This is slightly more difficult than
it looks, because of the date comparisons.)

3. List all tracks whose titles include the word “rock”, or any other word entered in an
INPUT statement.

VARIABLE LENGTH RECORDS

I said to begin with that I was going to assume that all records had 12 tracks, that each
track title occupied exactly 20 bytes, and so on. What I've created is a file of records all of
which are guaranteed to be 336 bytes long. I doubt if it will surprise you to learn that such
a file is said to have fixed length records. Further, each record contains fields of fixed
length, so that, for instance, each track title has to be padded with spaces (or abbre-
viated) to 20 bytes. Now, in anideal world, it would be nice to allow variable length fields
(terminating each with a field delimiter of some kind) and variable length records (also
terminated with some other delimiter). Then we would not waste 27 bytes with every
“Yes” album, and there would not be 8 null tracks for every classical symphony
(assuming we treat each movement as a track).

However, what you gain on the swings you lose on the roundabouts. First, the
programs for extracting fields from a record become more complicated. We have to
search, byte by byte, looking for field delimiters, and we can no longer talk about “‘the
fifth field”—there may not be one. Second, the utility routines for reading and writing,
and handling file blocks become rather hairy. After all, in our fixed system it was easy to
define a block as (effectively) a two-dimensional array, which was number of bytes per
record X number of records per block. If the number of bytes per record changes, we can
no longer think in that comfortable way. On the other hand, if we keep the buffers a
fixed size then the number of records per block changes, depending on the record sizes!

I don’t want to give the impression that handling variable length records is beyond the
wit of man; only that it may not be as sensible as it appears at first sight. The point is that
as we increase the complexity of the utility programs, we also increase their size, which
correspondingly decreases the quantity of main memory left for the user program and
the file buffers. Also, unless a lot of space is being wasted in the fixed length format, the
introduction of extra delimiters may use up most of the file space being saved. Often,
careful choice of field lengths in a fixed length system provides a perfectly adequate
answer. We should also think carefully about the file contents. Do we really want
classical and pop records on the same file? Wouldn’t it be better to have two files, so that
each can be defined in a sensible way, without having to cater for the features of the
other? ’

So much for your
file- handling

In any event, we should never forget that we are trading cassette backing store, which
is cheap, against RAM, which isn’t. In fact, 5 Kilobytes (KB) of data will cost you around
1p on cassette tape. (It’s easy to calculate—just remember that, at a transfer rate of
around 200 bytes/second it will take 25 seconds to save 5 KB, and then work out 25 + (60
X 60) of whatever you paid for your last C60. You’ll probably find my figure is
pessimistic.) 5 KB in main memory is, even today, as memory prices fall like lead
balloons, still going to cost you around £10. No contest, I think.

If the above treatise sounds like the plausible ramblings of somebody who doesn’t
want to have to think too hard unless he’s actually forced into it, then you’ve caught my
mood exactly. Computers are supposed to make life easier, not more difficult.

A modest proposal

There’s one niggling feature of cfs as it stands: initcfs asks the user for details of the
record and block sizes, even for files which already exist.

Modify cfs so that a “header” block is written first to any output file, containing the
record and block size details. Then, if an input file name is specified to initcfs, this
routine no longer asks for the buffer size details but reads them from the header block of
the input file.

(For a less modest proposal, see Chapter 17.)

67

There are lies, damned lies, and
computer print-outs.

10 Shalistics made Simple

National Wealth Servers Ltd. (NWS) employed 24 staff at £5@ per week. The Managing
Director got £104,000 per year. When the Regional Organization of Wealth Serving
Employees (ROWSE) went on strike for more pay, the management took out a full-page
ad in the Gardener pointing out to the public that the average wage was £128 per week.
The Managing Director was quoted as saying ‘“These layabouts should get back to work
at once and stop whining: £128 is a perfectly fair weekly wage.”

Statistics can be used, and misused. Averages can be a fair measure of the “‘norm”, the
“typical value”—sometimes. They can also be distorted by the odd exception that is
wildly out of line, as here. The calculation is correct:

Total weekly wage
Number employed
24 X 50 + 2000
25

24 x2 + 80 =128

But the interpretation—“Most workers get about £128”—is not.

Which goes to show that an understanding of basic statistics is well worth having. In
this case ROWSE published its own ad, pointing out that a more appropriate statistic is
the mode, the commonest wage, here £50. Recognizing the impeccable logic of this
argument, NWS sacked its Managing Director, handing over control to a committee of
employees, and upped their wages to £128 per week, leaving a saving of £4056 per
annum—which, over the next ten years, almost defrayed the cost of the original
advertising campaign.

Of course, it doesn’t always happen that way . . .

Average

PRESENTATION OF DATA: HISTOGRAMS

This isn’t the place to teach you statistical theory. What I’'m going to do is write out some
programs that let you explore statistical ideas without having to go into their inner
workings. That way you can get some feel for what they mean in practice. And an
important part of statistics involves the way that data are presented.

The Spectrum being a visual beast, I'll concentrate on two standard types of graphic
display: the histogram and the pie chart.

A histogram displays how often a given “‘event’ has occurred. For example, suppose I
throw a die twenty-eight times, with the results:

1 is thrown 3 times
2 is thrown 6 times
3 is thrown 5 times
4 is thrown 5 times
5 is thrown 4 times
6 is thrown 5 times

Then a histogram display will have six vertical bars, labelled 1-6, of the corresponding
heights. So bar 1 has height 3, bar 2 has height 6, arid so on; See Figure 10.1.

6 y//
Number 237»/4%%;4//// %i422?22:%

of times

N

thrown Z %?7 <;%f // //A;
Yy &=
i i

2 6

Value

Figure 10.1 Histogram showing number of times a given value occurred when throwing a die.

The average, or mean value of the throw is given by

1X3+2%X6+3X5+4X5+5X4+6X%X5

8 = 3.57

Notice how each score is multiplied by the size of the bar above it. Now a fair die, in the
long run, should give roughly equal numbers of occurrences for each of the values 1-6,
with a mean value

1+2+3+4+5+6_
6

3.5

So this particular statistic agrees pretty well with theory. Note, however, that the
commonest value in the experiment—the mode—is the number 2, which occurs 6 times.

The mode tells you where the highest point of the histogram is. The mean tells you
whereabouts to draw a vertical line so that the total area would balance there. These
need not be the same; and the mean only gives an idea of the “typical” value if the
numbers aren’t too spread out. Here they are very spread out.

I'll talk about how to measure the degree of spreadoutness later on: for the moment all
I really want is the idea of a histogram. To get you used to that, here’s a program that
displays a histogram for throws of a die, which you input as you throw. It also says what
the mean value thrown is at any stage.

10 LET init = 50

20 LET valin = 1000

30 LET hist = 1500

40 LET mean = 2000

5@ LET wtot=0: LET num =@
100 DIMd (6)

70

200
210
220
230
240
500
510
520
530
540
550
560
570
580
590
600
1000
1010
1020
1030
1040
1050
1060
1070
1500
1510
1520
1530
2000
2010
2020
2030
2040
2050

Type this in and RUN. Take a die, and throw it: hit the corresponding key. (That is, if
you throw a ““4”, hit key 4, and so on. No need to press ENTER.) A coloured histogram
builds up: for each number 1-6 it shows how many times that number has been thrown.
The mean is printed out too, as you go. If any number gets thrown more than 20 times the
program halts with a message (actually you have to hit a key to get the halt). To

GO SUB init

GO SUB valin

GO SUB hist

GO SUB mean

GO TO210

REM init

PLOT 103, 175: DRAW @, —160: DRAW 48, 0
PRINT AT 21, 13; ©“123456”

FORi=1TO6

PLOT99 + 8 +i,15: DRAWO, —5

NEXTi

FORi=0TO20

PLOT 103,15 + 8 *i: DRAW —5 =5+ (i= 10 OR i = 20), 0
NEXT i

PRINT AT, 9; “20”; AT 10, 9; “19”
RETURN

REM valin

IF INKEYS$ < > “” THEN GO TO 1010
IFINKEYS$ = “” THEN GO TO 1020

LET ¢ = CODE INKEYS$ — 48

IFc <@OR ¢ > 6 THEN GO TO valin

IF ¢ = THEN STOP

LETd(c)=d(c) +1

RETURN

REM hist

IF d (c) = 21 THEN INPUT “No room for display”’; x$: STOP
PRINT AT 20 — d(¢), c + 12; PAPER¢; “(J”
RETURN

REM mean

LET num = num + 1: LET wtot = wtot + ¢
LET a = .01 * INT (100 * wtot/num)

PRINT AT 2, 22; “Mean ="

PRINT AT 4,23;a;“0 00"

RETURN

terminate before that, hit key 0.

You’ll easily see how this works. The main program is in lines 200—249: init sets up the
axes and scales; valin reads the key; hist plots the chart; mean works out the mean and
prints it.

The INT business in line 2¢20 is just a way to ensure that only two decimal places (or
fewer) are printed. It’s a useful trick. (For 3 decimal places, use LET a = .01 * INT
(1000 * wtot/num) and so on, with an extra zero in both slots for each extra decimal place
required.)

PRESENTATION OF DATA: PIE CHARTS

Aptly named, these show how the cake is divided between different recipients . . . well,
fairly aptly named. A circle is sliced into pieces, with bigger shares represented by a
bigger slice. You know the kind of thing.

The next program is an automatic pie-chart slicer. It accepts as input a series of named
items (of expenditure, say) and produces a pie chart. It works best with 10 items or fewer,
and preferably no item should amount to less than 3% of the total. It works even if these
criteria are not met, but pie charts themselves aren’t very useful if they have too many
slices, or slices so thin you can’t see them.

200 REM datain

210 INPUT “Number of items?”’; n

220 DIMi$ (n,9): DIM v (n)

230 DIMa(n +1)

240 FORi=1TOn

250 INPUT “Name of item?”; i$ (i)

260 INPUT “Value of item?”’; v (i)

279 PRINTATI, 5;i$ (1), v (i); “00 0~
280 INPUT “Is this correct? y/n”; q$
299 IF g$ = “n” THEN GO TO 250

300 LPRINT I$ (i), v (i): REM only type this line if you have a printer
310 NEXTi

320 LETtot=0

330 FORi=1TOn

340 LET tot = tot + v (i)

35¢ NEXTi

500 REM piechart

510 CLS: CIRCLE 84, 84,75

520 LETang=9

530 FORi=1TOn

5490 LETang=ang+ v(i)*2+*PI/tot
550 LETa(i+1)=ang

560 PLOT 84,84

570 DRAW 75 * COS ang, 75 * SIN ang
600 REM label

610 LETu= 5*(a(i)+a(i+1))

71

72

620 PRINTAT11—-7*SINu, 10+ 7= COS u;i

630 NEXTi

700 REM table

710 FORi=1TOn

720 PRINT AT, 21;i; “:;i$ (i)

730 NEXTi

749 COPY: REM if you have a printer

Lines 30 and 740 should be left out unless you have a printer and actually want a

record of the results. Lines 280 and 299 provide a way of correcting mistakes if you catch
them straight away: if this feature annoys you, delete them. (Incidentally, you don’t
need to hit “y” for yes: any key except “n”’ will work. ENTER is the obvious one.)

For example, key in the following figures, which give the Gross National Product (per
head) of the EEC countries in 1978.

Number of items: 9

Name of item Value of item y/n
Belgium 129 n to correct
Denmark 144 "
France 116 "
Germany 137 "
Holland 123 %
Ireland 50 "
Italy 60 "
Luxembourg 126 "
UK 73 4

Figure 10.2 shows the resulting pie chart. Experiment using other sets of figures, real or
imaginary.

DONOAR LR
AHIOMNOm
”"‘i on 3* m

cr

Figure 10.2 How the EEC pie is divided . . .

MEANS, MODES AND ALL THAT

I've already explained means and modes. (There’s another creature called a median, but
let’s not get confusing.) The mean is an “average” value, the mode a (there may be more
than one) “commonest” value.

I also mentioned that the mean is reasonably “typical” provided the data aren’t too
spread out. To measure the spread, statisticians use a gadget called the standard
deviation. It’s the root mean square deviation from the mean, if you must know.

They also have a favourite curve, called a normal curve, used to approximate histo-
grams: it is chosen to have the same mean and standard deviation, and it’s shaped like a
camel’s hump.

Rather than present you with a mass of mathematics (you can always look the stuff up
in a statistics text—any will do) I've written a program which lets you produce your own
histogram, and then tells you the mean, the (smallest mode, the standard deviation, and
plots out the normal curve approximation as a bonus.

If you (or your child) are studying statistics at school, this program will help you (her,
him) get a good feel for what these things represent.

10 LET init = 500
20 LET draw = 1000
30 LET stats = 2000
40 LET normal = 3000
50 DIMa (24)
60 LETstep=3
100 GO SUB init
110 GO SUB draw
120 GO SUB stats
130 GO SUB normal
149 STOP
50 REM init
510 CLS
520 PLOT 15, 165
530 DRAW 0, —150
540 DRAW 240, 0
55¢ FORt=1TO24
560 PLOT 15+ 10*t,15: DRAWO, -3 -3+ (t = 10OR t = 20)
570 NEXT't
580 FORt=1TO15
599 PLOT 15,15 + 10+ t: DRAW -3 -3+ (t = 10),0
600 NEXTt
610 PRINT OVER 1; AT 21, 0; ““[13 spaces] 10 [11 spaces] 20”
620 PRINT AT7,0;“1”
630 PRINT ATS8, 0; “9”
640 RETURN
1000 REM draw
1005 LETh=15

73

74

1010
1020
1030
1049
1045
1050
1055
1060
1070

1080
1090
2000
2005
2010
2015
2020
2025
2030
2040
2050
2055
2060
2079
2080
2099
2100
2105
2110
2120
3000
3010

3079

FORi=1TO24

IF INKEY$ < > “” THEN GO TO 1020

IF INKEYS$ = “” THEN GO TO 1030

LETk$ = INKEY$

LETh=h + 10 * (CODE k$ — 53)
IFh<15THENLETh =15

IFh > 165 THEN LET h = 165
LETa(i)=(h—15)/10

PLOT 15+ 10 +i— 10, 15: DRAW @, h — 15:
DRAW 10, 0: DRAW @, 15 —h

NEXT i

RETURN

REM stats

LETtot=0: LETnorm =®: LETm =0: LETmv =0
FORi=1TO?24

IFa(i)>mvTHEN LETmv =a (i): LETm =i
LET tot = tot +i*a (i)

LET norm = norm + a (i)

NEXT i

LET av = tot/norm

PRINT AT ®, 3; “Mean = (J”; av

PRINT AT 1, 3; “Mode = (0”; m

LETstd =0

FORi=1TO 24

LET std = std + a (i) * (i —av) * (i — av)
NEXT i

LET std = SQR (std/norm)

LET-std = .01 « INT (100 * std)

PRINT AT 2, 3; “Standard deviation = [1”; std
RETURN

REM normal

FOR i = @ TO 249 STEP step
LETy=EXP(—(5+i/10—av)*(.5+1/10 — av) /(2 *std * std))
/(std * SQR (2 *PI))

LETy=y *tot

IFy > = 150 THEN GO TO 3060
IFi=Q@THENPLOTIi + 15,y + 15

IFi> @ THEN DRAW step, y + 15 — PEEK 23678
NEXT i

RETURN

USING THE PROGRAM

The program is designed to make it very easy to set up trial histograms; and in
consequence the way these are entered is fiendishly unorthodox and infuriating until you
get used to it. It goes like this. The bars at positions 1-24 are entered in turn. Initially the
height is @ (and is always between () and 16). The next bar-height is 5 — k larger if the
number key k in the top row is hit. That is, the number-keys control the change in height
of the bar from one column to the next, like this:

Key Effect on height of bar

4 smaller
3 smaller
2 smaller
1 smaller
same

1 higher
2 higher
3 higher
4 higher

OO NE WN =

For instance, RUN and then hit (no need for ENTER) the keys
S 56 6 67 8 5234445555555 5515°75
to get the result of Figure 10.3.

o
-
i b
WL W
1 22
id
Wi
i |
51
o U
it
gt
(i
4
»
i
3
i
i

‘v{§ =

Figure 10.3 Normal curve approximating a histogram fairly well . . .

Invent your own histograms, and check that:

1. The mean is a reasonable ‘“‘average” value. If you cut the histogram from sheet metal
it would balance at the mean.

2. The mode is the first “peak” value. (The other places at this height are modes too,
but the program doesn’t notice other peaks. It would be easy to change this.)

75

76

3.

Histograms that are more “‘spread out”, like
55666 7 8555552344455 555H575

(inputs) have larger standard deviation; histograms that are “bunched” like
5535 5559 9115 5

have smaller standard deviation.

The normal curve is a reasonable approximation to histograms that have a single

peak, are not too spread out, and are roughly symmetric . . .

5

5 555 5585 5555

But it can be quite bad for other histograms: for example when there are two humps

like

which gives the result of Figure 10.4.

555777911445 5588333515253535

an = 9. 5391083045
de =
sndard deviation 4 . .BE
o’
g H W an s, 3}
- 3] % x“‘\\” i
\ i . l"«« e .
= | o™ ; b
-~ i i *f
P 1 T4
i - : i i,
% 1 § ; ; Y 3 3 4 T § v
19 20
Figure 10.4 ... and very badly.
Project

Change lines 1¢45-1060 so that you input the heights of bars directly. (This is easy to do:
the only reason I didn’t use it above is that the program as it stands produces histograms
very quickly and without much thought, once you get used to it, so it’s ideal for

experimentation.)

Experiment

Throw 4 dice, and note the total. Do this 10@ times. Enter the resulting histogram into
the program above (via the Project) and see what the results are. Is the normal curve a
good fit, or not?

Simulation

Use the Spectrum’s random numbers to simulate throwing 4 dice: repeat the analysis.

A little attention to detail can work
wonders—such as translating from
Spectrumese into algebra . . .

Il Improving the Display

Many programs can be made much more attractive by setting up user-defined characters
to get a more accurate representation of the desired effect. Here I’ll consider one project
along these lines, which takes polynongials in several variables x, y and z, in the form that
the Spectrum uses, and makes them look like ordinary algebra. (If you don’t like
algebra, bear with me: the computing is the main thing.)
Ordinary algebra writes polynomials like this:
ax>+bx+c
2x3 + Sy’
a*+ b* + ¢ — 3abc
But the Spectrum uses “*”” for multiplication, instead of just writing the symbols next to
each other; and it uses ‘1" rather than raising symbols off the line, like this:
a*x12+b*x+c
2xx13+5+y17
a?3+b13+c13—-3*a*b=*c
The first step is to develop user-defined characters for the raised exponents 1,2, .. ., 9,

0. Figure 11.1 shows a possible layout. Enter these as graphics characters “a”—*‘j”” in the
usual way (Easy Programming, p. 49).

Produce manifestos
for the Conservative

What on earth can you
do with write- only
memory ?

of WOM
write- only
memory

Zx-64

() (b) (©) (d)

(e)) (8 (h)

O §)

Figure 11.1 Graphics data for exponent characters.

Next, type in the following program. It accepts an expression in Spectrumese, and
runs through it performing three tasks:

1. Strip out all *’s.
2. Turn all numbers after 1 into user-defined graphic exponents.
3. Strip out the 1’s once (2) has been done.
LET pow = 200
LET prod = 600
LET print = 1000
10 INPUT “Expression to be tidied?”’; e$
20 LET!=LENe$
30 LETf$=“"
4 LETi=1
50 IFe$ (i) = “1” THEN GO TO pow
IF e$ (i) = “+«” THEN GO TO prod
LET f$ = f$ + e$ (i)
LETi=i+1
IFi > [THEN GO TO print
100 GO TO 50

L &8

200 REM powers
210 LETj=i+1
212 IFj>ITHEN GO TO print
215 LETc = CODE é$ (j)
220 TFc <48 OR ¢ > 57 THEN GO TO 500
230 LETfS$ = f$ + CHRS (c + 95 + 10+ (c = 48))
240 LETj=j+1
245 IFj>ITHEN GO TO p:int
250 GOTO?212
500 LETi=j
510 GOTO S0
600 REM products
610 LETi=i+1
620 GO TO S0
1000 REM print result
1010 PRINT “Old: O”;e$ ' ' “New: O0’; f$

TESTING AND SAVING

Try the expressions listed above, Spectrum version, as the inputs e$; check that the right
results appear. Now try some other expressions like:

2xx*xy*xz—17+a1552
m177+n188
a*rb*xcxd*e*f*g+45+h1999 + 32

and so forth.

The program won’t cope with everything: see what it does to 2 * 2, for example! But it
illustrates the idea.

To SAVE this in useful form, we must do a little more work, because user-defined
graphics don’t save automatically. First we must work out where they are.

In the 16K Spectrum, they start at address 32640. But you may have changed this (via
the system variable UDG, which lives in addresses 23675-6). So you may prefer to work
the address out as

PEEK 23675 + 256 * PEEK 23676

However, there’s an easier way, because the graphics character “a” has to start the
UDGe-area. So

USR “au

will work. (PRINT these, and see.)
Wind your tape to the place you want to start, and add a further line in preparation for
what comes next, namely

1 LOAD “exp” CODE USR “a”, 80
Now save the entire program, using
SAVE “algebra” LINE 1

for an automatic start on line 1.
You haven’t finished yet: now use byte storage to save the graphics:

79

SAVE “exp” CODE USR “a”, 80

This takes the 8@ bytes starting at USR “a”, the user-defined graphics area, and saves
them on tape. The 80 is there because each character takes 8 bytes, and we have 10
characters, so the total is 8 * 10 = 8)). Note that the added line 1 reverses this procedure to
LOAD these bytes back in again.

If you’ve got both safely on tape, rewind to the starting position, and type

LOAD *“algebra”

You'’ll get the usual buzzes and beeps and red/blue/yellow stripes and so forth, and a
message

Program: algebra

Leave the tape running. “Algebra” will automatically start at line 1; and this auto-
matically loads the user-defined graphics back in. There will be more buzzes and beeps
and stripes, and the message

Bytes: exp

after which “algebra” will go on to its next line, and continue to run as usual. Stop the
tape, and away you go. <

This is an example of chaining taped programs together, making use of the fact that
LOAD commands can be written into a program. For another example, see Chapter 15:
Changing the Character Set.

Projects

1. Modify “algebra” so that it works out any products of numbers, such as 23 * 45,
rather than just sticking them together to give 2345 (which is wrong) as the current
version will do.

Modify it to change all expressions like x * x into x2, or x * x * x and x * x? into x*, and
SO on.

Modify it to sort variables into alphabetical order, so that abcbab becomes aabbbc or
(better) a’b’c.

Modify it to remove any term that gets multiplied by 0.

Devise an expression which your best-modified version gets wrong; and modify it to
deal with that.

GO TOS.

USRS

ea

There are programs that do things in their
own right, and there are programs that help
you write other programs. The latter are
called utilities. For example:

12 line Renumbering -

Tidying up line numbers can be a terrible chore—so much so that on the whole, nobody
does . . . unless they have a utility program to do it for them. You can buy very fancy
line-renumbering programs; or you can write your own, thereby saving anything
between £5 and £10, possibly at the price of having something less versatile.

The program below is a compromise. It’s written on the premise that this isn’t a
Machine Code book, so the program has to be in BASIC; and since BASIC is slow, the
program has to be quick enough for actual use. That, in turn, means it has to be fairly
rudimentary. Specifically, it only renumbers the lines: it does not automatically re-
number GO TO or GO SUB numbers. I’ll say a bit more on this, after listing the
program.

LINE NUMBERS IN PROGRAMS

In common with most utilities, this one requires some actual knowledge of what goes on
inside the Spectrum when the buttons are pushed. You'll remember (Easy
Programming, p. 93) that the program itself is stored in RAM as a series of character-
bytes, beginning at the address held in the system variable PROG and ending
immediately before the address held by VARS. Consulting the Manual, you’ll discover
that these addresses can be found using the commands:

PROG: PEEK 23635 + 256 * PEEK 23636
VARS: PEEK 23627 + 256 * PEEK 23628

You’ll also find that each program line is stored in the format:

NS NJ LJ LS | codeforline | ENTER

where NS and NJ are the senior and junior bytes of the line-number, and LJ and LS are
the junior and senior bytes of the number of characters in the line altogether.
Specifically, if the line-number is n, then we have

NS = INT (n/256)
NJ = n — 256 * NS

and similarly for LJ and LS. So for line 709, for example, you get:

NS = INT (700 / 256) = 2
NJ = 700 — 256 « 2 = 188

and these are the first two bytes in the section of RAM that stores line 700.

82

By changing NJ, say to 198, we can fool the Operating System into thinking that this
line is actually line 710 (= 2 * 256 + 198). This suggests how to renumber the lines:

Run along the program area, PEEKing to find occurrences of the ENTER character
(whose code is 13). Having found one, we know that the next two bytes are a line-
number. POKE these to the desired new value.

FIRST ATTEMPT

If you write a routine to do just this, you’ll find that there are snags. First, it fails to
renumber the first line, because that does not follow an ENTER character. Second (and
more obscurely) if either of bytes LS, LJ happens to be 13, you’ll get trouble.
These faults are easily remedied: renumber the first line as a matter of course; and
jump over LY and LS.
Assuming for the moment that you want the new numbers to start at 10 and go up in
10s, this leads to a piece of code along these lines:
1000 LET prog = PEEK 23635 + 256 * PEEK 23636
1010 LET vars = PEEK 23627 + 256 * PEEK 23628
1020 LETns=0:LETnj=10
1030 FOR i = prog TO vars — 1
1040 IFi= prog THEN POKE/, ns: POKEi + 1, nj:
LETi=1i+4:LETnj = nj + 10: IF nj > = 256
THEN LET nj=nj — 256: LET ns = ns + 1
1050 IFPEEKi= 13 THEN POKEi + 1, ns: POKE i + 2, nj:
LETi=1i+ 5:LET nj = nj + 10: IF nj > = 256
THEN LET nj = nj — 256: LET ns = ns + 1
1060 NEXTi

Type this in; precede it by some lines to renumber:

1 REM
2 REM xxxx
17 REM

and so forth; hit GO TO 1009.
Oh dear: it crashes with an error message:

N Statement Lost, 1060: 1

Why?
LIST, and think hard.

SECOND ATTEMPT

Of course . . . the silly thing eventually starts renumbering itself. Once 103@ has been
renumbered, the NEXT i in 1060 sends the machine back to 186, which doesn’t exist any
more . . .

Well, that’s easily cleared up: stop the renumbering before hitting the renumber
routine itself. The easy way is to change line 1830, replacing vars-1 by vars-len, where len
is the length of the renumber routine in bytes. (Find this using vars-prog.) With this
particular routine, len = 385, so line 1030 should be

1030 FORi = prog TO vars — 385

and now it works. And, for BASIC, relatively fast. It takes about 20 seconds to
renumber a 5@-line program, which while not instantaneous, is quick enough to save a lot
of work. (For a simple and equally limited Machine Code routine, that is instantaneous,
see Machine Code and Better Basic p. 159, or Spectrum Machine Code Chapter 16.)

THIRD ATTEMPT

Now, it may be occurring to you that we’re possibly being a bit dumb. Those line-lengths
bytes LS and LJ are exploitable: instead of PEEKing daboriously along looking for
ENTER, we should be able to jump immediately to the next line-number bytes by
adding on the line-length (give or take a byte or two).

It may also occur to you that this may not save very much time, because of the
processing required for the addition and so forth. The only way to find out if it does is to
try it.

Here’s a program written along these lines: it clearly has at least one advantage—it’s
shorter.

1010 LETi= PEEK 23635 + 256 * PEEK 23636:
LET ns = @: LET nj = 10: LET fin =
PEEK 23627 + 256 * PEEK 23628 — 285
120 IFi> = fin THEN STOP
1030 POKE i, ns: POKE i + 1, nj: LET nj = nj + 10:
IF nj > = 256 THEN LET nj = nj — 256
LETns =ns + 1
1040 LETi=i+ PEEK (i + 2) + 256 * PEEK (i + 3) + 4:
GO TO 1020

The variable fin is of course the old vars, less the length (285) of this routine.

To see which method is faster, we load into each a reasonably long program using
MERGE, and time the execution of the renumbering routine. (You’li need programs
with line numbers less than 10@) to avoid overwriting part of the routine, though: see
below.) Do this before reading on . . . or at least make an educated guess . . .

On my test run, with a 5¢-line program, the times were:

First routine: 20 seconds
Second routine: 1 second

This utterly dramatic improvement shows how important it is not to stop thinking about
a program, just because it works.

FINAL (?) VERSION

We haven’t finished yet, though. The final job is to refine the routine to maximize its
usefulness. What criteria should be satisfied?

1. The routine should occupy as little memory as possible.

2. It should be written on as few lines as possible.

3. Those lines should be somewhere that is seldom, if ever, used in a normal program.
Failing a Machine-Code cheat and a lowered RAMTOP, the place to put them is on
lines 9995-9998. (Save 9999 just in case you want to tack on an extra piece of
program, using 9999 GO TO wherever . . .)

4. The names chosen for variables should be things you don’t normally use, so that the
routine can be safely MERGED and used on a program with directly entered
variables.

83

5. It would be nice to start and end on arbitrarily chosen lines, and to have arbitrary
increments and start values for the new numbers. (The first requires extra checking
which will cost time, and I won’t include it. The second is essential: you may want to
MERGE one of your favourite routines into something whose line-numbers overlap:
so you’d first want to renumber the routine suitably.)

Taking these criteria into account (and noting that it’s not possible to be all things to all
men: some conflict with each other, requiring a compromise) I ended up with this:

9994 INPUT “Start, inc?”; 01,02: LET 03 =
INT (01/256): LET 04 = 01 — 256 * 03
9995 LET o = PEEK 23635 + 256 * PEEK 23636:
LET oo = PEEK 23627 + 256 * PEEK 23628 — 315
9996 IF o > = oo THEN STOP
9997 POKE 0, 03: POKE 0 + 1, 04: LET 04 = 04 + 02:
IF 04 > =256 THEN LET 04 = 04 — 256: LET
03=03+1
9998 LETo = o + PEEK (o + 2) + 256 * PEEK (o + 3) + 4:
GO TO 9996

This takes a little longer—about 3 seconds on a 5¢-line program. That’s the price paid for
a little more flexibility.

The reason for all those o’s, of course, is that I hardly ever use ‘0’ for variables in
normal programs, because of the danger of confusing it with ‘zero’.

This is a genuinely useful routine. The idea is to save it under a name like “ren”.
Before writing a program, load it in up at the top end of the program area (thanks to its
high line numbers). Then write your program. Tidy the lines by calling ren, using GO TO
9994; edit the GO TOs and GO SUBs to their correct values; and when.you’re happy,
edit out lines 9994-9998 and save the final program.

If you’ve forgotten to load ren to begin with, you can always MERGE it later.

BLOCK RENUMBERING

This program is fine if you want to produce listings that go 10,20, 30 . . . inexorably and
without gaps—or 102, 104, 106, . . . for variety—but that’s not always what you want. It
tidies the listing; but it may make it less useful.

If you’ve read pages 87-92 of Easy Programming, on good style, you’ll know that one
way to produce civilized programs that work is to break them into blocks, each block
being a subroutine; to use named line numbers for the blocks (such as LET block =
1009); and to start each block off at a nice round number (1009, 2009, etc. depending on
how many blocks you've got to deal with).

Renumbering from start to finish will somewhat subvert this carefully produced
structure. On the other hand, when you’re developing block 1000 you’ll rapidly find that
debugging gives lines like 1035, then later on 1032 and 1033, and so on; and it either ends
up all untidy or it may even leave you needing to insert a line between 1046 and 1¢47. The
BASIC interpreter won’t like the idea of line 184672 or 1046.5.

So it would be nice to renumber within a block (where, incidentally, the GO SUB and
GO TO problems are much less, and in a well-structured program, largely nonexistent).
The following routine does this: you input the start and end of the block, the new starting
number, and the new increment: it does the rest.

If you ask it to renumber a block starting from a lower line number than the current
one, it BEEPs and asks for the input again. (This is done because the BASIC system is
unhappy if lines get out of order in RAM.) Similarly if you finish renumbering the block
with a line number that is larger than the following one, it BEEPs and keeps on
renumbering to the end.

The routine as written lives on line 990. If you input by direct command LET ren =
9000 you can access it by typing GO TO ren. Of course, a higher line number like 9999
might be preferable, and you can change the variables to less common ones as above:
here I’ll avoid such side-issues for clarity.

8999 STOP
900® INPUT “Start/end of block”; stt, end:
INPUT “Start/inc of new numbers’’; nst, inc:
IF nst < stt THEN BEEP .1, §: GO TO 990
9010 IF end > = 8999 THEN LET end = 8998
9920 LET ns = INT (nst/256): LET nj = nst — 256 * ns
9930 LET i = PEEK 23635 + 256 * PEEK 23636
9940 IF256 + PEEK i + PEEK (i + 1) < stt THEN
GO SUB 9%080: GO TO 9940
9950 IF 256 PEEK i + PEEK (i + 1) > end THEN
GO TO 9999
996@ POKE/, ns: POKEi + 1, nj: LET nj = nj + inc:
IF nj > =256 THEN LET nj = nj — 256: LET ns = ns + 1
9970 GO SUB 9980: GO TO 9950
9980 LETi=i+ PEEK (i +2) + 256 * PEEK (i + 3) + 4: RETURN
9990 IF256 *ns + nj — inc > 256 * PEEK i + PEEK (i + 1)
THEN BEEP .1, 20: LET end = 8998: GO TO 9060

Again this is a genuinely practical utility, especially in conjunction with MERGE.
Project

Think about automatically taking care of GO TO and GO SUB renumbering. (I haven’t
talked about this here, partly out of laziness, partly because the result is much slower-
running, and partly because the use of named subroutines, often good programming
practice, requires even more thought. For instance, in SUPERFILLER the subroutine
test is on line 2000, and this is set up by initializing the variable test = 2000 in line 20.
When line 2000 gets renumbered, you don’t need to change GO SUB test (line 250):
what you do have fo change is line 20, the value given to fest. And even if you take care of
this, there are tricks with GO SUB that renumbering messes up.)

The routines are not protected against line numbers going too high (above 9999). Do
this. (It will slow the thing down a bit more, though—is it worth it?)

85

86

Not only is this simply beautiful —
it’s beautifully simple too.

13 Polygons

This is basically a straightforward idea, but you can only do it on your own if you're
happy about trigonometry (SIN, COS, TAN, and the like). The object is to develop the
Spectrum’s graphics to allow the construction of polygons—and fancier creatures of the
same ilk.

A polygon, you’ll no doubt recall, is a figure made up out of straight line segments. Ina
sense, that’s all the Spectrum can draw anyway, but when the segments get short enough,
the results approximate curves. Which is why a hi-res picture of Bo Derek doesn’t look as
if her figure is made up of straight lines . . .

Harrumph: back to the Spectrum. A polygon is regular if all of its sides and all of its
angles are the same, so it’s nice and symmetrical. To draw a regular n-sided polygon, in a
circle of radius r, centred at x, y, use this:

10 INPUT “Number of sides?”’; n

20 FORi=0TOn

30 LETa=x+r*COS(2*i*PI/n):
LETb=y+r*SIN(2+*i*PI/n)

40 IFi=0THENPLOTa,b

50 DRAW a — PEEK 23677, b — PEEK 23678

60 NEXTi
As it stands, there’s a danger of going off-screen, so add:

5 IFr>xORr>yORr>25—-xORr>175—-y
THEN RETURN
The “RETURN” is because I'm thinking of using all this in a subroutine; so of course I'll
also need
70 RETURN

to tidy it all up. Great, but so far there’s no way to use it. So we add:

100 INPUT “Radius?”; r
110 INPUT “Centre?”’; x, y
120 CLS

130 GOSUBS5

Try this out; but remember to start it with GO TO 109.

Fine, but it soon gets boring. However, we can make the results much prettier by using
a loop. For example, delete line 10 and input

200 LETn=5:LETx=127:LETy =87
202 CLS

219 FORr=5TOS85STEPS

220 GOSUBS

230 NEXTr

which gives 1 .gure 13.1.

Figure 13.1 Concentric pentagons.

If you like that, get rid of the “LET n = 5" in line 204, and add:
205 INPUT “Number of sides?”; n

so that you can try different numbers. GO TO 200 now.

Try n = 50: pretty good circles (though slower than CIRCLE will get). Which is what I
meant by the remark about Bo Derek . . .

It'll never catch on,
know

you

87

ROTATIONS
After a time, even this palls. Those wretched polygons always point the same way. So
let’s add in a rotation:

206 INPUT “Rotate?”’; ro

and now we rotate it all by ro degrees, provided we change line 30 to:

30 LETa=x+r*COS(2+*i*PI/n+ ro=PI/180):
LETb=y+r*SIN(2*i*PI/n +ro*PI/180)

That lets us do even fancier things:

300 LETn=7:LETx=127:LETy =287
305 CLS
310 FORr=5TO85STEPS
320 LETro=r=*2
330 GOSUBS
340 NEXTr
Use GO TO 309: you’ll get Figure 13.2. Change the n = 7 to an INPUT command, for

variety. Change the r * 2 inline 320 tor, or r * 3, or whatever takes your fancy. Evenr * r/
50 is quite nice.

Figure 13.2 Rotating heptagons.

Looking at line 3@ in its current form, I can’t help wondering what would happen if the
plot positions a and b were rotated by different amounts. In other words, change it to

30 LETa=r*COS (2*i*PI/n+ rol/180):
LETb=r*SIN (2*i*PI/n + ro2/180)

where rol and ro2 are input using:
26 INPUT “Rotate 1 and 2?”; rol, ro2

Try this on a GO TO 20 start, first. It kind of twists the polygon up. Now adapt line 320
of the routine starting at 30, say to

320 LETrol=r*2:LETro2=r+3
That’s getting quite complicated now; and the designs are getting less predictable.

CURVED SIDES

What else? Well, the DRAW command can be used to draw curves as well as straight
lines (Easy Programming, p. 34). So we can add that as an option; change line 50 to:

50 DRAW a — PEEK 23677, b — PEEK 23678, bend
and arrange to input the amount of bend somewhere, such as
207 INPUT “bend?”, bend

You'’ll find that bends between about —4 and +4 work best; and I prefer the negative
values myself.

Experiment for a while with GO TO 200. Now put the bends into the loop at 3(). For
example, add

315 LETbend = —1/25
and change 320 to
320 LETrol =r/2: LETro2 =1/3

Getting quite complex, now . . .

STARS

If you change line 20 to (say)
20 FORi=0TO2*n

then you can input values n = 5/2, 7/2, etc. to get a S-pointed or 7-pointed star. With
20 FORi=0TO3+*n

you can try n = 5/3,7/3, 8/3, and so on; and in general with
20 FORi=0TOk*n

values of the form n = (whole number) / k will produce star-like creatures. (You’ll need
to input or assign k.)

Then you can add colour commands; plot using OVER 1. .. The variety is endless.
Here’s quite a nice one to finish with: key it in and GO TO 400. Figure 13.3 shows the
result.

First change line 20 of the subroutine to:

20 FORi=Q0TO3+*n
and then add:

409 LETn=11/3: LETx=127:LETy = 87
405 PAPER 0: BORDER 0: OVER 1: CLS
410 LETrol =0:LETro2=0

415 FORr=S5TO75STEP 10

418 LETbend = —1/25

89

420 INK1 +1/16
430 GOSUBS
440 NEXTr

Figure 13.3 Curved-sided 5%>-gons.

You can obviously use these routines inside other programs: for example, we haven’t
tried changing the centre x, y at all. See if you can draw a 4 X 4 array of pentagons; a line
of overlapping heptagons; a curved line of hexagons growing larger and larger and
rotating; a random arrangement of randomly coloured random-sided polygons and

stars . . .
But if you’ve followed me this far, you shouldn’t need further urging to have a go

yourself.

Esnes erom sekam ti sdrawkcab
gnidaeh siht daer uoy fi . . .

14 Cryplography and
Cryplanalysis

The art of putting things into code; and decoding the results without knowing what the
code is.

It is a sad comment on the human condition that the earliest recorded use of coded
messages, to avoid interception by the enemy, goes back to the Lacedaemaonians in 400
BC. The earliest book on the subject was On the Defence of Fortifications by Tacticus in
the fourth century BC.

The converse problem—decoding a message without knowing the code—has more
than just military significance. Historians need to know what was communicated in
messages between commanders during the American Civil War; and linguists need to
understand ancient scripts such as Egyptian hieroglyphs or Mycenaean Linear B. Some
of these may not have been code then, but they sure are now.

The computer can be a powerful weapon for the cryptanalyst, because it can carry out
“enlightened” trial-and-error at high speed. (Unenlightened trial-and-error takes far
too long, even on a Cray-1. Your Spectrum wouldn’t stand a chance.)

The simplest codes are substitution codes, in which each letter of the original message
is encoded according to a fixed jumbled-up alphabet; to keep the chapter within bounds
I'll concentrate on those.

SUBSTITUTION CODES

For example, suppose the message is
“My dog has four legs”
and the code is defined by

abcdefghijklmnopqrstuvwxyz
zvetrsnbjpkcuxdfgayohlqimw

The the coded message reads
“um tdn bzy sdha crny”

reading off from top row to bottom row.

The following program accepts a message and encodes it by a random substitution
code. It will be developed into a routine to decode such messages, given an intelligent
user.

100 LET a$ = “abcdefghijklmnopqrstuvwxyz”
105 PRINT a$

110 LETb$=“"”

120 FORi=1TO26

130 LETm = INT (1 + (27 — i) * RND)

91

140 LETb$ =b$ + a$ (m): LET a$ = a$ (TOm — 1) + a$ (m + 1 TO)

150 NEXTi

160 PRINT b$
So far this just randomizes the order of the alphabet by selecting the first letter at
random, then the second at random from those left, and so on. Study it carefully: the
magazines are full of “randomization” routines that pick two letters at random, swap
them, and repeat a great many times: that’s an incredibly slow way to achieve the result!

Now to input and encode the message:

200 INPUT m$

210 PRINT m$

215 LETc$=«"

220 FORi=1TO LEN m$

225 LETc= CODE mS$ (i)

230- IF c = 32 THEN GO TO 250

235 IFc<97THENLETc=c +32

249 IFc>=97 ANDc < 128 THEN LET c¢$ = c$ + b$ (c — 96)

250 NEXTi

260 PRINT c$

The main points to note here are that line 235 converts capitals to lower case; 230 ignores

spaces; and the ¢ — 96 in line 240 occurs because the alphabet occurs for characters
97-123.

FREQUENCY ANALYSIS

How would a cryptanalyst approach such a code? (Of course, in practice this method of
encoding messages is too easily broken to be of any real use: our immediate job is to see
why.)

The essential thing to notice is that ordinary English does not use letters equally often.
The letter “E”, for example, occurs far more frequently than “Z”. Here’s a table of the
average rate of occurrence (per 100 letters), determined by analysing government
telegrams.

a 074 n 079
b 010 o 075
c 031 p 027
d 042 q .003
e 130 r 076
f .28 s 061
g .016 t .092
h 034 u 026
i 074 \% 015
j 002 w 016
k 003 X .05
1 .036 y 019
m .25 z 001

In other words, the most common letter is “e”, occurring about 13% of the time; next
“t” at 9.2%; then “n”, “r”’, “o”, “a”, “i”, “s”, “d”, after which the frequency of
occurrence is less than 4%. So it’s a gocd guess that the commonest letter in a coded
version of a fairly long message should represent “e”, and so on.

For the message above (which is rather short) the frequencies are:
out of 16

N<“cmrunmzs3oao o
Pt DD bt ek ek ek N bt et DD e ek ek

The commonest are “n” and “y”, standing for “‘g” and *‘s” respectively; not much help,
but then it’s a very short message. If we started with a longer text, such as

“PEEK, POKE, BYTE and RAM is an excellent computer book™
then the coded version would be:

“frrk fdkr vmor zxt azu jy zx rierccrxo edufhora vddk™
(and in practice the spaces would be omitted). The frequencies are then:
out of 43

N X <E OB e =T-0OQ0O®
W= WNI N = 00 W = W) = = WA

The commonest letter is “r”’, which we assume stands for ““e”’; next come “d”, “f’, “k”,
‘e ”

0”, “x”. If the frequencies hold good, these should be “t”, “n”, “r”, “o”, “a”
respectively, in some order. In fact they are “o0”, “p”, “k”, “t”, “n”. We've got “n”,
“0”, and “t” in there: a little trial-and-error will sort them out.

Indeed, just knowing the “e” tells us that the message is:
B e e e ol =t] s

and we’re well on the way. Some four-letter words that go ““.ee.” are beef, beer, been,
beet, beep, bees, deed, deem, deep, deer, feed, feel, feet, heed, heel, jeep, jeer, keel,
keen, keep, leek, leer, lees, leet, meed, meek, meet, need, neep, peek, peel, peep, peer,
reed, reef, reek, reel, seed, seek, seem, seen, seep, seer, teed, teem, weed, week, weep.
That’s 48 to try: eventually you’d get the answer.

THE PROGRAM

So a cryptanalysis program for substitution codes should present you with an analysis of
the relative frequencies of the various letters; then let you try guesses and see what the
93

result is. Which leads to the following program:

500 REM Frequency analysis

510 DIMn (26)

515 LETcol=0

520 LETtot = LEN c$

525 FORi=1TO26

530 FOR j=1TO tot

5490 IFCODEc$(j)—96 =i THENLETn (i) =n (i) + 1

550 NEXT]
554 LETs$ = STRS (.01 * INT (100 * n (i) / tot)):
IFs$ (1) = “.” THEN LETs$ = “0” + s$

555 PRINT TAB col; CHRS$ (i + 96); “[07; s$;
560 LET col =col +8

570 1IF col = 32 THEN LET col = ¢

580 NEXTi

This works out the frequencies. Lines 555-580 produce a 4-column print-out. Line 554 is
an attempt (successful) to produce only two decimal places. If you omit the second bit
about s$ (1) you'll find that some numbers print out like

.M
and others like
0.34

which is messy and untidy. Putting an initial zero clears this up. But it’s a piece of
pedantry, really.
Now for trial-and-error decode:

1000 REM decode

1010 LETp$=“":FORi=1TO tot:
LETp$ = p$ + “.”: NEXTi

1020 PRINT AT 15, 0; p$

1160 REM trial

1110 INPUT “Code letter?”’; k$: IFLEN k$ < > 1
THEN GO TO 1110

1120 INPUT “Guess at decode?”’; g$: IFLEN g$ < > 1
THEN GO TO 1120

1130 FORi=1TO tot: IF c$ (i} = k$ THEN
LETp$ (i) = g$

1135 NEXTi

1149 PRINT AT 15, 0; p$

1150 GO TO 1110

Not bad. But there are snags. You can attempt to use the same letter to decode different
letters in the coded message, and not notice: that way lies disaster! So it would be nice to
check on this. To do so, we need to keep a record of the current state of knowledge.

10
1125
1500
1510
1520
1525
1530

1549
1550
1555
1560
1579
1600
1610

2000
2010
2020
2030

DIM d (26)

GO TO 1500

REM record of choice

LET k = CODEk$ — 96: LET g = CODE g$ — 96
FORa=1TO26

IFd (a) < >gORd (a) = k THEN GO TO 1560
INPUT “You have used (0”’; CHRS (g + 96);

“0 for code letter 0”’; CHRS (a + 96);

“0 do you want to leave it that way?”; y$

IFy$ = “y” THEN GO TO 1110

LETd(a)=0

GO SUB 2000

NEXT a

NEXTi

LETd(kk)=g

GO TO 1130

FORb = 1TO tot

IF p$ (b) = g$ THEN LET pS$ (b) = «.”
NEXT b

RETURN

All we need now is a way to exit, properly informed, when we think we’ve cracked it:

1115

IFk$ = “¢” THEN GO TO 2500

This lets us input “(”” when asked ‘“‘code letter?”” to wrap it all up.

2500
2510
2520

2530
2549
2550
2560

2570

REM wrap it all up

CLS

PRINT “Code message: ' c$ '’

p$ "’

PRINT “Code known so far:”
FORi=1TO26

PRINT AT 12,i + 3; CHRS (i + 96)

IFd (i) < >@THEN PRINT AT 13,i + 3;
CHRS (d (i) + 96)

NEXT i

!

“Decoded message:

To avoid cheating, you must now delete lines 105, 160 and 210. Get someone else to input
the message. Or . . .

95

96

PROBLEM

Here are four messages for you to decode (answers at the back, page 139). They are all
well-known quotations. Each is in a different substitution code.

1. jluruorufqfuofbdqcjavoadtegtfdjrmgjqfpjrqwonnoadofbuyuradqfpnutfutejluhqdr
qplj
2. buxgbzzyliflgxnqxnzyngkrlyvrlbcxgxnfzefzflxhbnfxljylgxniyvxzgceyjlqxbaaxlfixrlgx
jexxp
3. gbrxzuzxbzyuzaajrtzqjsrbrsjxtydhogbrobrabrakxrryzxtrcvdqyzardxcmnchrtodnro
bra
4. xjvwgzmcgzjvdjmvzgiozyzvlzznziljxvvlzuxnhljgdnzmmcgzjvvloxc
Projects
1. Modify the program to display the table of letter-frequencies if asked (say by input
“1”” when asked for “code letter?”).
2. Add a bubble-sort (Easy Programming, p. 65) to list the letters used in order of
frequency. This makes guessing easier.
3. Add anoption (enter “2” at the “code letter?” stage) to print out the table of normal
frequencies of letters, for reference.
4. The commonest two-letter combinations in English (digraphs) are:
en 111 on 077
re .098 in 075
er .087 te 071
nt .082 an .064
th 078 or .064
Write a digraph-counting routine to take advantage of this extra information.
5. Write programs to implement other codes (good references are the Encyclopedia

Brittannica and The Code Breakers by D. Kahn) and to allow you to try to decode
them. ;

Need more than 23 user-defined graphics
characters? Now you can have 256 of
them with a single POKE.

15 Changing the Characler Set

I mentioned in Chapter 6 that you can set up new characters above RAMTOP and access
them by POKEing the system variable CHARS. This chapter describes the process in
detail.

For simplicity, assume we want 64 new characters. Then we’ll need 64 * 8 = 512 bytes
of clear space. RAMTOP normally lives at the value 32599 in a 16K Spectrum, so it has
to be lowered to 32599 — 512 = 32087 to leave a 512-byte “attic”’. To do this, enter
(directly)

CLEAR 32087

The cleared area starts at the next address, 32088. This is 125 * 256 + 88, so its junior byte
is 88 and its senior is 125. We fool CHARS into pointing at this new area by deducting 1
more from the senior byte (remember, CHARS holds 256 less than the address of the
character table). The actual command is thus

POKE 23606, 88: POKE 23607, 124
But don’t input this yet.
This program lets you set up 64 new characters, and tests them to make sure allis well.

10 FORi=32TO 9%
20 GO SUB 400
30 PRINTI -31,
49 GO SUB2M
50 PRINT CHRS i
60 PRINT'
70 NEXTi
80 GO SUB 400
9 STOP

200 REM new address for CHARS

210 POKE 23606, 88: POKE 23607, 124

220 RETURN

400 REM usual address for CHARS

410 POKE 23606, : POKE 23607, 60

420 RETURN
1000 REM input routine for new character set
1010 LETi= 32088

1020 INPUT j

1030 PRINT j; “007;

1040 POKEi, j

1050 LETi=i+ 1: GO TO 1020

Here 200 resets CHARS to the new area; 400 sets it to its usual position; and 1000 is an
input routine.

Start with GO TO 1000. For a test, we’ll only use six characters. Exactly as in
user-defined graphics, you need to draw a picture of the character on an 8 % 8 grid;
convert the rows to binary @s and 1s; then input this value (see Easy Programming, p.
49). Here I'll use the six characters shown in Figure 15.1: that means I must input, in
order,

255 255 255 255 255 255 255 255 (for m)
255 129 129 129 129 129 129 255 (for 7)
1 3 7 15 31 63 127 255 (for A)
255 255 195 195 195 195 255 255 (for O)
1 2 4 8 16 32 64 128 (for /)
24 126 126 255 255 126 126 24 (for @)

That’s enough: input STOP, then RUN. You should see the six characters listed as 1, 2,
3,4, 5, 6 on the screen. If not, check your work carefully!

(2) (3)

4) (%) (6)

Figure 15.1 A set of six test characters.

Having seen that the method works, the final task is actually to input those 64
characters. That comes in stages:

1. Design them. You could use CHARACTER-BUILDER, a utility routine in Easy
Programming.

2. Read off the data for the rows. (Ditto).

3. Input the data at line 1030 as above.

&

Alpha Beta Gamma Delta
#

Epsilon Zeta Eta Theta

Iota Kappa Lambda Mu

Nu Omicron Pi

Rho Sigma Tau Upsilon

: |
Phi Chi Psi Omega

Figure 15.2 Design for a Greek alphabet.

100

I'm sure your mind is already thinking of lots of fancy tricks to make all this easier, such
as combining CHARACTER BUILDER with the little program above. Let me just
mention one. For direct input of the rows in binary, avoiding the tedious conversion to
decimal (which is a nuisance since the Spectrum promptly converts back to binary)
change line 1020 to:

1020 INPUT b$
1425 LETj= VAL (“BIN” + b$)

Now you input the rows as sequences of @s and 1s, read off from the 8 x 8 grid: @ for a
blank, 1 for a blacked-in square.

What characters should you put in? The above suggest some possible graphics. Figure
15.2 shows a complete Greek alphabet.

USING THE NEW SET

To use the new characters in programs, once they’re up there in memory, all you need do
is reset CHARS and call them by number. If you set CHARS as in line 20@, then ask for
CHRS$ 31 + n, or simply ask for the usual character with code 31 + n directly, you'll get
the n-th character in your new list. For the usual characters, change CHARS back as in

line 400.

SAVING THE NEW SET

To SAVE your hard work on tape, you need byte storage. If you enter
SAVE “newset” CODE 32088, 512

then you get the 512 bytes starting at address 32088 on tape, and they are named
“newset”. (Run the tape the usual way for SAVE, of course.)
To load them back in, you use

LOAD “newset” CODE 32088, 512

Now there’s an even better way. Write a program to do the loading. First enter the
program:

10 LOAD “newset” CODE 32088, 512

Now SAVE this, under the name “newload” (say). Use SAVE “newload” LINE 10.
Immediately after it, on tape, SAVE the new characters using SAVE . . . CODE as
above. So now you’ve got two chunks of stuff on the tape.

Rewind, enter LOAD “‘newload”, push the buttons, and watch.

The first screen message will be:

Program: newload

Immediately this has loaded in, it will run starting from line 10, because of the LINE 10
command in the SAVE. Leave the tape running and the newload program will now
automatically load in the bytes for newset (with message Bytes: newset). Saves re-
membering all those address numbers and suchlike . . .

This method opens up new possibilities altogether. You can chain programs end-to-
end, in such a way that each calls the next. Provided you’re nippy with the tape controls,
and don’t want to go backwards, you can make use of this idea in all sorts of ways, to
effectively increase the power of the machine, by making full use of the extra memory
capacity on the tape. Chapters 9 and 17, on Cassette Files and Data Management
Systems, explore this idea in one useful context.

One minor snag with the Spectrum’s PLOT
and DRAW commands is that they lead to
error reports if the points being plotted

go off the screen. The answer is to

design a utility routine for . . .

16 Crashproof Curve-plotting

The easiest way to draw curves is to write a loop which, after PLOTting a starting point,
DRAWSs successively to other points, generated from either a list of data or a formula.
However, this runs into trouble if points go off the screen. What follows is a blow-by-
blow account of the development of one method of getting over this. It gets a little bit
mathematical in places; but if maths isn’t your strong point, ignore the algebra and
concentrate on the overall structure.

Recall that for hi-res graphics the Spectrum employs a coordinate grid having 176 rows
and 256 columns (numbered #—175 and #-255) starting from the bottom left corner of the
screen. The edge of the screen therefore forms a rectangle 176 x 256 pixels in size. The
key to the whole game is to devise a subroutine which, when fed the coordinates (x1, y1)
and (x2, y2) of two points, not necessarily on the screen, works out where the line joining
them hits the edge of this rectangle (Figure 16.1).

175

SCREEN

Figure 16.1 Where does a line between two points meet the edges of the screen?

101

102

A smidgin of the old coordinate geometry lets us compute these points. The algebraic

expression

(a—b)*(d—e) e
c_ -

crops up repeatedly in various disguises, which is a sign that maybe a user-defined
function is in order (see Chapter 3).

Using this, we get the following routine. (The line-numbers may look a bit irregular:
the idea is that if you follow through this chapter and input all the program lines as you
go, you’ll end up with the complete program; but the description will go subroutine by
subroutine. It’s always easier to key in, and to design, long programs this way.)

2
1000
1010
1020
1025

1030

1090
1100

1110

1120

1130

1149

DEFFNa(a,b,c,d,e)=(a—b)*(d—e)/(c—b)+e
REM seg

DIMx (2): DIMy (2)

IF x1 = x2 THEN LET xt = x1:
LETxb=x1:LETy/= —1:LET yr = —1
IFyl = y2 THEN LET xt = —1: LET
xb=—-1:LETyl=yl: LETyr =yl

IFx1 < >x2 ANDyl < >y2 THEN LET
xt =FNa(175,y1, y2, x2,x1): LET
xb=FNa(0,yl,y2,x2,x1): LET
yl=FNa(0,x1,x2,y2,yl): LET

yr = FN a (255, x1, x2, y2, y1)

LETq=1

IF xt > = @ AND xt < = 255 THEN LET
x(q) =xt: LETy(q) =175:LETq=q + 1
IF xb > = @ AND xb < = 255 THEN LET
x(q) =xb:LETy(q) =0:LETq=q + 1
IFy/>=0ANDyl/ < =175 THEN LET
x(qQ)=0:LETy(q)=y:LETq=q+1
IFyt > = @ AND yr < = 175 THEN LET
x(q) = 255: LETy (q) = yr

RETURN

In a program, this routine needs to be supplied with the four numbers x1, y1, x2, y2
(giving the coordinates of the two points): it puts the coordinates of the points where the
line through these meets the rectangle into

x(1),y()

x(2),y(2)
To be able to call this subroutine we either use GO SUB 1000, or, writing in a civilized
style, we initialize

22 LETseg= 1000
in which case we can use GO SUB seg. So add line 22.

It’s wisest to fest this beast before going any further: the algebra is messy enough for
mistakes to go undetected at this stage, causing havoc later. Add temporary lines:

100 LETx1=127:LETyl =87
110 FORt=1TO 50
120 LET x2 = 5@ * SIN (t * PI/50):
LET y2 = 500 * COS (t * PI/ 50)
130 GO SUB seg
149 PLOTx(1),y(1): DRAWX(2) —x(1),y(2) —y(1)
150 NEXT't
160 STOP

Now RUN: if you get a set of radial lines through the middle of the screen, stopping at
the edges, all is well. If not, check the listing again. Delete 100—160 once the routine is
OK.

That’s done the brainwork. Most of the rest is now routine... or at least, subroutine...

HOW TO DRAW CURVES

First job is to decide the general structure. There are two main ways to draw a curve:

1. A graph. Plot FN (t) against t, where FN is some function. See Easy Programming,
p. 79 for details.

2. A parametrized curve. Plot FNb (t) against FNa (t), where FNa and FNb are two
functions, and t is called a parameter.

It would be nice if our routine allowed either option. (This isn’t hard, because a graph
is actually a special kind of parametrized curve, with FNa (t) = t. But one generally
thinks of them in different ways.)

The user is going to have to set up these functions. We could have a line in the program
like:

7777 DEF FNb (t) = some rubbish or other

and ask the user to edit this line to his desired function. But wouldn’t it be nice to let him
input his chosen function during the program run?

The VAL command (Easy Programming, p. 71) is tailor-made for this kind of
application. If the user inputs FNb (t), say, as a string f$, then we can evaluate it by
asking for VAL f$. For instance, if t = 71 and f$ = “t * t”. then

VAL f$ = VAL “t* t” = 71 * 71 = 5041

and this is the value of the “‘square” function at t = 71.

It’s also going to be a nuisance if we can only plot curves where the coordinate values
range from @ to 155 and @ to 175 (the usual problem of shifting and stretching axes, see
Easy Programming, p. 81). A standard technique is to set up a window covering the
desired area, and to transform the coordinates suitably during the drawing routine
(Figure 16.2).

So the structure in outline is as shown over page.

Leaving the details to take care of themselves (fop-down programming; see Easy
Programming, p. 87) we write the main program:

100 PRINT “SPECTROGRAPH”
110 PRINT ' “OPTIONS:” '’ “00 0 1. Parametrized
curve [11 spaces] 2. Graph”

103

104

120 INPUT “Select option number”; opt
130 GO SUB window

140 CLS

150 IF opt = 1 THEN GO SUB param
160 IF opt = 2 THEN GO SUB graph
170 STOP

Choose option

. '

Graph Parametrized curve

Choose window

+

Input function(s) that
define the curve

!

Draw the curve

Outline structure for setting up a window.

SUBROUTINES

That leaves us with three subroutines to write: window, param and graph.
window is simplicity itself:
20 LET window = 500
500 REM window
510 INPUT “Window coordinates: left, right,
bottom, top”’; wi, wr, wb, wt

520 RETURN
I've already said that graph is a special case of param, so obviously the thing to do is write
param first and then hope graph takes care of itself.

To plot a parametrized curve, with parameter t, we need to know two things: the range
of values for t, and the size of steps along this range at which points are computed. So
param has to ask for these, and then draw the curve.

26 LET param = 2000
2000 REM param
2010 INPUT ‘“‘Parameter range: left, right”; t/, tr
2020 INPUT “Number of steps?”’; ns

Curve

|

I

|
Axis %

Axis WINDOW to be
transformed to
(255 horizontally,

0175 vertically

Figure 16.2 The screen area used as a window.

2030 INPUT “Specify x and y as functions of t”; x$, y$

2040 LET stepsize = (tr — t/) / ns

2050 GO SUB draw

2060 RETURN
That’s managed to leave most of the work to the subroutine draw, not yet written. Great!

graph works much the same way, and jumps into draw at a suitable point:
24 LET graph = 1500

1500 REM graph

1510 LETt/=0:LET tr = 255

1520 LET ns = 255

1530 INPUT “Specify function of t”’; y$:

LET x$ = “t”

1540 LET stepsize = 1

1550 GO SUB draw

1560 RETURN
I've deliberately written this to bring out the analogy with param: graph automatically
sets all of the variables in param except for y$, which is the function input, and then calls
draw in exactly the same way. (You could replace the last two lines by GO TO 2050, but

good style suggests otherwise provided it doesn’t waste a lot of memory or time.)
We can’t put off the evil moment any longer . . .

105

106

28 LET draw = 2509

2509 REM draw

2510 LETt=t/

2520 LETu= VALx$: LETv=VALYy$

2530 GO SUB transf

2549 TFFNo (u,v) THENPLOTu,v

2550 FOR't = tl + stepsize TO tr STEP stepsize

2560 LETu= VALx$: LETv=VALYy$

2579 GO SUB transf

2580 GO SUB flag

2599 GO SUB (f)

2600 NEXT't

2610 RETURN
. .. Well, maybe we can after all. We’ve managed to invent three new subroutines (one
of which has four parts):

transf which transforms the variables so that the chosen window fits the screen area
exactly,

flag which sets up a flag to tell us whether the points to be joined up in draw are both on
screen, both off, or on and off respectively. This sets a variable f/ to one of the values 1, 2,
3, 4 depending on the precise combination of positions. ,

d (fl) which is actually four routines d (1)-d (4), for each flag value, because the
actions needed are quite different from one case to the next.

We’ve also introduced a new user-defined function FN o (see Chapter 3). This is
supposed to be an “on screen” flag. That is, if we define

1 DEFFNo(x,y)=x>=0ANDx < =255
ANDy>=0ANDy < =175
then FN o (x, y) = 1if (x, y) is on the screen, and FN o (x, y) = @if (x, y) is off the screen.
Now isn’t that pretty? Of course you could do it other ways: my other half would
probably define a flag called onscreen and write 2549 IF onscreen THEN In fact,
this works with onscreen = FN o (x, y). Anything to make the listing look like the
Queen’s English rather than Einstein’s Law of Gravity.

You may feel we’re not getting anywhere yet, because we haven’t approached the
central problem of actually drawing stuff. Have faith: can’t you feel the problem getting
smaller as we knock bits off the corners and break it up into smaller pieces?

Transforming for a suitable window is easy if you’ve had six years of mathematical
training like I have:

30 LET transf = 3000
3000 REM transf
3010 LETu = (u— wl)/ (wr — wl) *255:
LETv = (v— wb)/(wt — wb) * 175
3020 RETURN
And you can even check that I'm right. What we want is for the u-coordinates w/ and wr
to transform to @ and 255; and wb, wt to transform to @, 175. Now putting u = wl on the

right-hand side gives u = ¢ on the left; and putting u = wr gives u = (wr — wl) / (wr — wl)
*255=1=+255=255... gosh! And wt, wb work just the same way.

To pick up the thread:

32
3200
3210
3220

LET flag = 3200

REM flag .

LET fl=FNo (x0,yo) +2*FNo (u,v) +1
RETURN

That works like this: suppose we want to join the old point (xo0, yo) to the new point (u,
v). Then we have:

Old point New point Value of f/

on on 4
on off 2
off on 3
off off 1

(where on/off refer to whether the point is on or off the screen). So the value of f/
distinguishes the cases.
Why distinguish? The required action is:

Value of f/ Action required

1 Draw that part of the line between the old and
new points, that lies on-screen (if any)

2 Join the old point to the edge of the screen,
along the line towards the new point

3 Join the edge of screen to the new point, along
the line from the old one

4 Join the old point to the new

The reason for action (1) is that it may happen that, while both old and new lie
off-screen, part of the line between them should fall on it, hence be drawn in (see Figure

16.1).

DRAWING ROUTINES

Here they all are, written in the easiest order for my poor little brain at the time.

34
37
38
39
49
3500
3510
3520
3600
3610

DIMd (4)

LETd (1) = 3800

LETd (2) = 3600

LETd (3) = 3700

LET d (4) = 3500

REM d (4)-both on
DRAW u — PEEK 23677, v — PEEK 23678
RETURN

REM d (2)-old on, new off
LET x1 = xo0: LET y1 = yo:
LETxX2=uw:LETy2=v

107

3620 GO SUB seg

3630 LETz=1

3640 IFu<>x0ANDSGN (u —x (1)) <>SGN (x (1) — x0)
THEN LETz =2

365¢ IFu=x0ANDSGN (v —y(1)) <>SGN (y (1) — yo)
THEN LETz =2

3660 DRAW x (z) — PEEK 23677, y (z) — PEEK 23678

3670 RETURN

3700 REM d (3)-old off, new on

3710 LET x1 = xo: LETyl = yo:
LETX =uw:LETy2=v

3720 GO SUB seg

3730 LETz=1

3749 TFu < >x0 AND SGN (u —x (1)) <> SGN (x (1) — x0)
THEN LETz=2

3750 IFu=x0 ANDSGN (v—y (1)) <>SGN (y (1) — yo)
THEN LETz=2

3760 PLOTx (z),y(z): DRAWu —x(z),v—y (2)

3770 RETURN

3800 REMd (1)-both off

3810 LETx1=x0:LETyl=yo: LETx2=u:LETy2=v

3820 GO SUB seg

3830 PLOTx(1),y(1): DRAWXx(2) —x(1),y(2) —y(1)

3840 RETURN

All that stuff with SGN is to find out which of the points x (1), y (1) or x (2), y (2) is the
right one to use. Ignore it if you hate maths.

That’s almost it. The variables xo and yo for the old point’s coordinates haven’t been
set up anywhere, though. The right place is at:

2535 LETxo=u:LETyo=v
and again at

2575 LETur=u:LETvr=v

2595 LETxo=ur: LETyo =vr

TESTING
Now we’re ready to test.
RUN, and type in:
Option 1
Window —5 S =5 5
Parameter range =5 5
Number of steps 100
Functions of t t t

All is well: a (not entirely straight) line climbs from lower left to top right. (It didn’t?
You’ve boobed!)

Something a bit harder? Let’s go for a parabola, part of which is off-screen. (The first

test didn’t use subroutines d (1)—d (3) at all . . . which is the main point of the whole
exercise!)

Option - 1

Window —5 5 -1 20

Parameter range =5 5

Number of steps 100

Functions of t t txt

Figure 16.3 shows the result. It’s pretty—but it’s a funny parabola . . .

You may or may not be surprised how long it took me to find the bug. Too long—I
must have been getting tired. A LPRINT trace showed that the culprit was subroutine
d (1)—joining up two points, both off-screen. But what was wrong with it?

Figure 16.3 A parabola! Well, almost . . .

Eventually the obvious dawned. If the two points joined are both off-screen on the
same side, the line through them can meet the screen even though the line segment
between does not (see Figure 16.4).

e

Wr
Ol)g!

SCREEN

AREA

Figure 16.4 The source of the bug.

109

110

This is easily fixed, using yet another subroutine:

33
4000
4010
4020

4030

4049

LET check = 4000

REM check

LET segon = 0

IFx1 = x2 AND SGN (y1 — y (1)) =
SGN (y2 —y (1)) THEN LET segon = 1
IFx1 <>x2ANDSGN (x1 —x(1)) =
SGN (x2 — x (1)) THEN LET segon = 1
RETURN

This sets up a flag segon, which is 1 if the situation in Figure 16.4 obtains. To get into it,

add:
3825

GO SUB check: IF segon THEN RETURN

On repeating the test with the parabola . . . it worked! Finally, a more stringent test:

Option 1

Window -7 7 -3 6

Parameter range 0 21

Number of steps 300

Functions of t SIN(11«PI*xt) COS(13*PIxt)

This is a Lissajous figure (Easy Programming, p. 111) but the window is chosen so that it
repeatedly goes off the screen and comes back on again. The result is shown in Figure
16.5 and it’s pretty clear that the program does what it’s supposed to do.

Figure 16.5 A Lissajous figure going on/off screen a great many times, making an excellent test.

Projects

This is a genuinely useful program. Try your own choices of option, windows, and
functions, starting with the suggestions below. If in doubt, use the functions above and
just vary the other numbers, one by one. A good source for ideas is A Book of Curves by
E.H. Lockwood, Cambridge University Press.

It’s clear that some improvements are still possible. In several places there are very
similar chunks of code that are used more than once—no doubt a subroutine would
shorten the listing. An option to re-run while changing only a chosen variable would be
useful. You may even be able to devise a more clever approach to the whole problem:
one trouble with top-downing is that if you select a bad strategy to start with, you tend to
be stuck with it.

You can also add extra routines. Do you want axes drawn? Scales marked? Several
curves superimposed? I'll leave these as projects for those so inclined.

SUGGESTIONS FOR CURVES

Option 2: Graph

(a) Catenary: window -5 5 —-10 100
EXPt + EXP (—t)

(b) Cissoid: window =5 5 -2 2
t/SQR (10 — t)

(c) Neile’s parabola: window —-10 10 =il 10
(t=t)1(1/3)

(d) Serpentine: window -10 10 el 1
2xt/(4+t=*t)

(e) Strophoid: window —1.5 2 =5 1

t*SQR((2—-1t)/(2+1))

Option 1: Parametrized curve

(f) Cochlioid: window —-20 20 -20 20
parameter range -30 30
number of steps 500
t*SINt*COSt
t*SINt=SINt
1 i
& JW
.
N,

Figure 16.6 The cochlioid.

111

(g) Limagon: window -10 10 -10

range =PRI PI
steps 100
(3+5+COSt)*COSt
(3+5+COSt)*SINt
(h) Rosace: window -1.2 1.2° —12
range 0 PI
steps 500
COS (11 =t) = COS t
COS(11+t)=SINt

Figure 16.7 An 11-petalled rosace.

(i) Pseudo-Lissajous: window -10 10 -10
range =5 S
steps 500

10/(1+t+t)*SINB+t)
10/(1+t+t)*SIN(5+t)

10

1.2

10

Figure 16.8 An elegant pseudo-Lissajous figure.

112

Most files have a lot in common.
Why not treat them all alike?

I1 Dala Management Sysiems

Let’s develop the ideas on files (Chapter 9) further. There, it was assumed that before
create, maintain and search programs can be written, we have to know the exact features
of the file we’re dealing with. And yet all files are going to look pretty much the same.
Just the number of fields per record and their lengths will vary. So it wouldn’t be difficult
to modify inrec, for example; changing all those constants (30, 36, etc.) for variables. As
an eminent Irish computer scientist has remarked: “All your constants should be
variables”.

Hang on, though. How will inrec know what the field lengths are in a particular case?
Well, why not allow initcfs either to ask for them from the user when a file is being
created, or to read them from the header block otherwise? The form of the header block
is now getting a little more complicated, so let’s look at it in some detail.

THE HEADER BLOCK

Basically, it’s going to be two arrays. One contains a user-supplied name for each field
(so it’s a string array), and the other holds the number of bytes allocated for each field.
We no longer need to know the number of bytes per record, because that’s the sum of all
the field lengths, but we still need the number of records per block, so let’s build that into
the numeric array. There’s one other consideration. Fields can contain either character
or numeric information, and will probably need to be handled differently in each case.
So it would make sense to ensure that fields are distinguished in this way when they’re set
up. We could have another array with this information but I'm going to tag each field
name with a “c” or “n” in the first byte to indicate character or numeric type. So our
arrays might look like Figure 17.1.

Here, I'm assuming that the file is to hold a set of bank account transactions. We have
a six-character date (held as characters because we aren’t going to do arithmetic with it; if
you want to, it would be best to have 3 separate numeric fields, nday, nmonth and
nyear), a cheque number, and an amount of money (both numbers) and a description
field in which up to 25 characters may be put to describe the transaction. Cheque
numbers are always 6 digits long (at least, mine are), and 8 characters in the amount field
allows you to enter up to £99999.99, which is somewhat on the optimistic side for my
bank balance. (Notice that a character space is used up by the decimal point.) The
number of records per block is 20 and, just so that field names match up with their
lengths, n$ (1) is left blank. I'm always happier when there’s the odd spare storage
element anyway, because it allows some leeway if I've forgotten anything. Since both
arrays are 11 elements long, there’s room for 10 fields per record. Of course, it presents
no problem to alter this if you feel it’s a bit restrictive.

113

114

n$

unused —»

cdate

ncheque-no

namount

cdescrip

wide

le— 10 bytes __p.|

O ® N & s W=

P ek
- O

20

-«———records per block

25

Figure 17.1 Header block layout.

SETTING UP A FILE

initcfs now looks like this:

9500 DIMn$ (11, 10): DIMw (11): LETip = 0: LET op = 0:

LET inbc = @: LET outbc = @: LET bpr = 0
9505 INPUT “Enter input filename:”; f$

9510 IF f$ = “null” THEN GO SUB set up: GO TO 9525

9514 PRINT “Start PLAY recorder”

9515 LOAD f$ + “h1” DATAn$ ()

9520 LOAD f$ + “h2” DATAw ()

9521 PRINT “Stop PLAY recorder”

9525 INPUT “Enter output filename:”’; g$

953) FORp=2TO11

9535 LET bpr = bpr + w (p)

9540 NEXTp

9545 DIMi$ (w (1), bpr): DIM o$ (w (1), bpr)
9547 IF g$ = “null” THEN RETURN
9550 SAVE g$ + “h1” DATAn$ ()

9555 SAVEg$ + “h2” DATA w ()

9557 PRINT “Stop recording”: PAUSE 120

9560 RETURN
It’s much the same as before, except that if we enter “null” as the input filename, it calls
setup which will generate a new file description. Otherwise, it loads a file description
from the first two blocks of the input file (which, for a file called “fred”, will be “fredh1”
and “fredh2”), works out the number of bytes per record (lines 9530 to 9540) and sets up
the input and output buffers from this information. Finally, if the output file isn’t “null”,
it writes the header blocks out.

We'll write setup from 9400 on:

940¢ INPUT “Enter no. of fields:”’; nf

9405 CLS

9410 FORp=2TOnf+1

9415 PRINT AT 10,2; “field O0”;p — 1

9420 INPUT “Name of field (1st char:c/n):”; n$ (p)

9425 INPUT “No. of bytes:”; w (p)

9430 NEXTp

9435 CLS

9449 INPUT “No. of records per block:”; w (1)

9445 RETURN
There’s nothing much to comment on here. setup simply executes a FOR loop once for
each field, entering the field name and length of the appropriate array elements. There’s
a slight fiddle necessary to account for the fact that field 1 actually occupies array
element 2, of course. Finally, the number of records per block is specified and entered
intow (1).

Now we’re in the home straight. We can rewrite inrec using the fixed format version to

give us clues as to how to tackle this, more general purpose, routine.
The old one started:

8000 DIM a$ (336)

The 336 was the length of a record. Naw initcfs has evaluated this, and put it in bpr. Sowe
have:

8000 DIM a$ (bpr)
The next line was:
8010 INPUT “Artist”’; a$ (TO 30)

So, in more general terms, what we would like to do is to have a loop in which the
equivalent line says something like:

INPUT “next field name”’; a$ (beginning of field TO end of field)
and this gets repeated for every field. You can’t write something like:

10 LET p$ = “next value”
20 INPUT p$; nv

because, although it’s perfectly valid BASIC, its meaning is different from what we
want. Line 20 does not say “prompt with whatever’s in p$ and then accept a value into
nv”. It says “accept a string into p$ and then a value into nv”’. However, if you put
brackets around p$, this produces the desired effect.

115

116

SCREEN DISPLAY

While this arrangement is conveniently simple, it can be a little confusing for the user.
He only sees one field of a record at a time, and it would be helpful if he saw the whole
record being built up. Also he wouldn’t have any indication about the length of field he
could use.

The simple solution is to build up a record on the screen by using PRINTS for prompts
and copying each INPUT value on to the screen to match with its associated prompt.
This will be a familiar technique to you if you cut your teeth on a ZX81 which didn’t allow
prompt strings in INPUTS!

So we would like the screen display to look something like this for the bank account
example:

c: date 060482
n: cheque-no. 317462
n: amount =71.37
c: description Office armchair: tax ded.

where the underlined items are entered as INPUT values and immediately redisplayed as
shown. The underlines will actually be printed, and will show the maximum width of
each field.

Note several things: firstly, the field type has been separated out from the field name
and is there just as a reminder to the user. Secondly, the amount is shown as negative,
and you’ll see why this convention is useful later. Thirdly, the user makes a note in the
description field that the item is tax deductible. He’s not using the system very sensibly,
because he’s bound to want a list of deductible items at the end of the year, and that
means doing a search on part of a field. He should have thought of this before he started
and used a fifth field to identify deductible items.

Cartoons aren’t
surgical supplies

Is there a tax on
cartoons !

Sorry - |
thought you said
“harpoons

Anyway, back to the problem:

8010 CLS:LET begin = 1 [clear the screen so the record
display isn’t cluttered, set
pointer to start of a$. . .

8020 FORp=2TO11 and enter loop]

8025 IFn$(p,1)=“0’THENGOTOB8120 [test for last field]

8430 PRINT AT p, @; n$ (p, 1); :”’;

AT p, 4;n$ (p) 2 TO) print
8040 FORc=1TOw (p) field
8050 PRINT ATp,14 +c;“” template
8060 NEXTc

Now we need to know where the beginning and end are of the slice of a$ that this field
occupies:

807¢ LETend = begin + w (p) — 1

First time round, begin = 1, because it was set up in line 8019 and end =6, which means
we can write:

8080 INPUT (n$ (p) (2 TO)); a$ (begin TO end)

and the effect will be to prompt with the word “date” and transfer this to a$ (1 TO 6).
Now we put this on the screen display:

8090 PRINT AT p, 15; a$ (begin TO end)
Finally we must set up the new ““begin” position:
8100 LET begin =end + 1
and close the loop:
8110 NEXTp

Pass the result to r$ and exit from the subroutine:

8120 LETr$ = a$
8130 RETURN

TESTING

At this stage we can write a couple of test routines to see if it all works. First we need to
create a file. The routine used to create the record collection file will do without
modification. Just to remind you:

100 GO SUB initcfs

110 GO SUB inrec

120 GO SUB write

130 INPUT “Any more? (y/n)”’; q$

140 IF q$ = “y” THEN GO TO 119

150 GO SUB close

160 STOP
When you run this, initcfs will ask for an input filename, which you’ll enter as “null”, of
course, and then you’ll be prompted for a record description. You could use the bank
account one as a fairly simple example. Make the block size small, 5 say, so that you
don’t have to enter too many records before th¢ blocking mechanism is activated. That
way everything gets checked without too much keyboard pounding. Finally, enter 10 or

15 records, to make up the test file.
Now we need to know whether the data have been saved correctly. Replace lines

110-160 with:
110 GO SUB read
120 IFr$ (TO?2) = “}}” THEN STOP
130 PRINT r$
149 GOTO11¢

117

118

When you run this you’ll get records like:
12088212345921.76 0 O O coconuts

printed out (if you’ve used the record format in the bank account example).

Now we know that the first 6 bytes represent a date, so that’s 12/8/82, and that that’s
followed by the cheque number (123459) and an amount (21.76—note the 3 spaces,
because there’s room for 8 bytes in the record definition) and finally, a description. But
outputs like that are hardly user-friendly. So what we really need is a routine which
unscrambles r$ into its separate fields. Let’s call this outrec since it performs the opposite
function to inrec, and we’ll store it from 8200 on:

8200 LET begin =1

821) FORp=2TO11

8220 1F n$ (p) = “0O0” THEN PRINT: RETURN
8230 PRINTn$ (p, 1); “:”; TAB 4; n$ (p) 2 TO);
8240 LET end = begin + w (p) — 1

8250 PRINT TAB 15; r$ (begin TO end)

8260 LET begin =end + 1

8270 NEXTp

8280 PRINT: RETURN

Unsurprisingly, this routine bears more than a passing resemblance to inrec, but there is
one important difference. We want the records to scroll through continuously, rather
than be displayed at the same position on the screen. If we arranged for the latter, you’d
have to be a pretty fast reader to see anything at all! So “PRINT AT” is no good. To get
the horizontal tabulation previously provided by a coordinate in a “PRINT AT”
statement, I’m using the “TAB” function. If you haven’t used this before, you can think
about it as equivalent to “PRINT AT” without a row specification. In other words, if you
say

PRINT AT 2, 15;. ..
you are specifying row 2.
PRINTTAB 15;. . .

gives the same column position, but on the next available print line, wherever that is.
Now all we have to do is change line 130 to:

130 GOSUB outrec

and, when the result is run, every record is displayed, in readable form, on the screen. Of
course, you're unlikely to want a complete listing of the file on the screen. It would make
more sense to send one to the printer. So we should have a routine called loutrec which
outputs a record to the printer. It will look identical to outrec, except that all the PRINTSs
will be changed to LPRINTs.

THE GRAND DESIGN

Now we have all the tools we need to build our data management system proper. So we’ll
take a rest from coding, take a few steps back, and consider the grand design.

We implemented three routines in the original file-handling system: create, maintain
and search. We need all these, plus a few extra ones; and this time, we’ll link them via a
menu from the same main program. So there isn’t much point in having “‘maintain” as
one of the options, and then immediately being asked whether it’s “add” or “‘delete”
that we want. We might as well have ““add” and “‘delete” as major options.

Our main program looks like this, then:

10 CLS
20 PRINT AT 0, 5; “Spectrum Data Manager”: GO SUB initcfs
26 CLS
30 PRINT AT 2, #; “Options are:”
40 PRINT AT 3, 11; “1) create”
41 PRINT AT4, 11;“2) add”
42 PRINT ATS, 11; ““3) delete”
43 PRINT AT 6, 11; “4) search”
100 INPUT “Enter option no.:”; opt
110 GO SUB 200 * opt
120 GOTO26
Do I hear murmurs of discontent? Is someone out there muttering that one minute I'm
saying that we’ll need to implement some extra routines and the next I'm only allowing

for the ones we’ve already thought of? It’s a fair cop, guv. But notice how easy I've made
it to tack on any new routines. We simply add another line to the option listing:

44 PRINT AT 7, 11, “5) whatever you fancy”

and then put the appropriate subroutine at line 1000 onwards, since the mechanism
which steers the main program to the correct subroutine simply multiplies the option
number by 200.

So create is at 200
add is at 400
delete is at 600
search is at 800
whatever

you fancy is at 1000

and so on.

This is altogether a better approach than to build the system in a cut-and-dried way,
not allowing for any expansion. It’s only when you've used a system for a little while that
you begin to realize its limitations, and wish you’d implemented a routine to rule the
world, or whatever. Do things this way, and you can modify the program anytime
inspiration (or, more likely, frustration) grips you.

INITIALIZATION

One more thing to note: initcfs is called before any of the options is invoked. That saves
inserting it in every routine, and responding to it more than once if we want to do several
things to the same files. Of course, it means the program must be re-run to establish
different files. Unfortunately, it also means a little coding rethink, because initcfs does a
few things other than just define filenames. It also sets pointers and block counters, and
these things do have to be reinitialized at the beginning of a second file read. So we’ll
introduce a further subroutine into cfs called reset which just zeros these pointers:

9970 LETip = 0: LET op = 0: LET inbc = @: LET outbc = 0
9980 RETURN

Now the first line of initcfs can become
9500 DIM n$ (11, 10): DIM w (11): LET bpr = @: GO SUB reset

119

120

and, of course, line 1 has added to it:
LET reset = 9970

Finally, we can call reset in the main program before looping round to the menu display:

120 GO SUB reset
130 GO TO26

THE ROUTINES

create we already have, except it needs renumbering and a RETURN rather than STOP
on the end:

20 GO SUB inrec

210 GO SUB write

220 INPUT ““any more? (y/n)”; q$

230 1IF q$ = “y” THEN GO TO 200

249 GO SUB close

25 RETURN

add is more of a problem. For one thing, it was previously not implemented

separately, and for another, I've already commented on its rather primitive nature. So
we’ll take the opportunity of rethinking the problem. We need to load all the additions
into an array to start with, and then, as the file is read, compare each of them with the
current record to decide whether to make an insert or not. Also, we need to flag each
potential insert to indicate whether it has been written out yet. For the time being we’ll
pigeon-hole that problem. So:

409 INPUT “how many records?”’; nr

410 DIM b$ (nr, bpr)

420 FORq=1TOnr

430 GOSUB inrec | load additional

4490 LETb$(q) =r$ records into b$

450 NEXTq

|— set up array

Now, the next bit looks tricky. We have to identify the part of the record to be used as the
key. Using the bank account file for example, we could be ordering records by date,
cheque number or amount and, as usual, we want to allow the user as much flexibility as
possible. So we’ll call a subroutine, whose details we’ll worry about later, called
“extractkey””. For the time being we’ll simply say what we would like extractkey to do for
us. It will ask the user for the name of the key field, and provide to the calling routine
three values:

begin: the byte of r$ or b$ (p) at the beginning of the key field
end: e s LA e r r end r " r "
ctype: this will be @ if the key is numeric and 1 if it’s a string

Defining extractkey as a subroutine has the usual advantage that we seem to be doing
very little work, since we’ve defined what it does, and can make use of it, before actually
having to work out how it does it. Looking ahead a little, though, we can see that there’s
a second typical subroutine feature present: because delete and search are also going to
need it!

Anyway, for the minute, we’ll assume that extractkey is available, and work out how to
use it:

460 GO SUB extractkey

SORTING

Next, we’ll sort the additional records into order. We couldn’t do so before because we
didn’t know what key to sort on until extractkey has been to work:

465 GO SUB sort
and now we can set a pointer to the first record in b$ to be inserted into the file:
470 LETap=1

Things are fairly straightforward from here in. All we need to do is compare b$ (ap) with
the next record from the file (r$). If r$ has the smaller key, then output it, otherwise
output b$ (ap). There’s a point to watch, though. If r$ is output we need to get the next
record from the file, but if an element of b$ is written we just have to bump the value of
ap by 1. In either case, we must guard against reading past the end of file or past the end
of the array. What happens when the input file or the addition array is exhausted?
Different things, unfortunately. So we’ll call a subroutine loosends which will tie them
up.
489 GO SUB read

499 TF ap > nr OR1$ (TO 2) = “}}” THEN GO SUB loosends: RETURN

Now we want to compare the keys of r$ and b$ (ap). Let’s extract them into s$ and t$
first:

500 LET s$ = r$ (begin TO end): LET t$ = b$ (ap) (begin TO end)

Now to compare s$ and t$. But there’s a problem. s$ and t$ may be numeric or character
keys. If they’re actually numeric, but are seen as strings, then 123 won’t be seen as
identical with 123.0. Worse still, 5 turns out to be greater than (712!

So we need two more subroutines, compn and compc, which do numeric and character
comparisons respectively. Both of them will return a value called comp which identifies
the result of the comparison as follows:

Value of comp Meaning

-1 s$ < t$
0 s$ = t$
1 s$ > t$

You may be wondering why I've specified “="" and “>"" conditions when all we really
need is “<”. The reason is that I've got one eye on the delete, search and sort routines
which will also use comparisons, probably in different ways from this one. So it’s best to
make the routines as general as possible.

Now we can write:

510 IF ctype THEN GO SUB compc
520 IF NOT ctype THEN GO SUB compn

You may not have seen this kind of construction before (unless you’ve read Chapter 3).
There doesn’t seem to be a test in the “IF”. The point is that a condition in an “IF”
statement is evaluated to @ or 1 depending whether it is false or true. So if you write:

75 IFa=bTHEN...
the “a = b” is replaced by 1 if their values are the same, and by zero otherwise. Since
ctype is given the value @ or 1, we’re just saving one process in the evaluation, and the
result reads more nicely than “IF ctype = ® THEN GO SUB compn”.

Now to test comp. If comp is less than zero we want to output r$ and get the next file
record to replace it:

530 IF comp < @ THEN GO SUB write: GO TO 480

Otherwise, we have to output the current additional record. But don’t forget that we can

121

122

only output what’s in r$, and its current contents will have to be saved and restored
before and after this process:

540 LETt$ =r1$: LET1$ = b$ (ap): GO SUB write: LET r$ = t$:
LET ap = ap + 1: GO TO 499

Note the “GO TO 499" on the end. We don’t go back to 480 because we haven’t flushed
the current file record out yet, so we don’t need another one!

MORE SUBROUTINES

Now comes the reckoning. The subroutines called with reckless abandon from the add
routine will have to be written. We’ll give them the following line number starting points
and, of course, these will have to be initialized at the beginning of the program:

extractkey 7800
loosends 7600
compc 7400
compn 7200
sort 7000

extractkey has first to ask the user which field is the key:
7800 DIM k$ (9): INPUT “Enter key field name”’; k$

k$ will be a field name from the second byte on. In other words, it will not include the
type character. It seems more natural to enter “amount’ than “namount”, and the “n”
isn’t essential, since we already have that information in n$.

Now we have to search through the array n$ looking for k$, but we also have to keep
track of how many bytes along we’ve got. So let’s adopt this procedure: assume it’s the
first field we’re after, so begin = 1. If it’s not, bump begin by w (2), so it’s now pointing to
the start of the second field. If that’s not the one we want, bump begin by w (3) and so on.

7810 LET begin = 1 (note: k$ must be 9

7820 FORp=2TO 11 bytes long because it’s
7830 IFn$ (p) (2 TO) = k$ THEN GO TO 7860 being compared with the
7840 LET begin = begin + w (p) last 9 bytes of every
7850 NEXTp element of n$)

7860 LET end = begin + w (p) — 1

Now we can identify the type of the field by looking in the first byte of the element of n$
being pointed at by p:

7870 1F n$ (p, 1) = “c” THEN LET ctype = 1

7880 IFn$ (p,1) = “n” THEN LET ctype =0

7899 RETURN
Actually quite painless, wasn't it!

Now for loosends. If we’ve reached the end of the file first, we have to flush the
addition buffer. Otherwise, we have to copy the rest of the file. So it’s pretty straight-
forward:

7600 IF ap > nr THEN GO SUB cpyfile: RETURN
7610 FOR p = ap TO nr
7620 LET $ = b$ (p)

7630 GO SUB write
7640 NEXTp

7650 GO SUB close
7660 RETURN

and if cpyfile is at 7700:

7700 GO SUB write

7710 GO SUB read

7720 1F r$ (TO 2) = “}}” THEN GO SUB close: RETURN
7730 GO TO 7700

compc and compn are pretty easy:

7400 1F s$ < t$ THEN LET comp = —1
7410 IFs$ = t$ THEN LET comp = 0
7420 IFs$ > t$ THEN LET comp = 1
7430 RETURN

7200 IF VAL s$ < VAL t$ THEN LET comp = —1
7210 IF VAL s$ = VAL t$ THEN LET comp = 0
7220 TF VAL s$ > VAL t$ THEN LET comp = 1
7230 RETURN

THE SORTING ROUTINE

Finally, we need sort. If you've read Easy Programming you’ll remember I introduced a
bubble-sorting algorithm in the Debugging chapters. We’ll use it again here. It’s not the
most efficient or elegant sorting procedure ever devised (quite the reverse, in fact) but it
is simple and since b$ isn’t a huge array, it won’t take too long to execute.

7000 LETinc=1

7005 LET flag =0

7010 FORp =1TOnr — inc

7020 LET s$ = b$ (p) (begin TO end): LET t$ = b$ (p + 1) (begin TO end)

7030 IF ctype THEN GO SUB compc

7040 IF NOT ctype THEN GO SUB compn

7050 IF comp > @ THEN LET t$ = b$ (p): LET b$ (p) =b$ (p + 1):

LETb$ (p+1)=1t$: LET flag = 1

7066 NEXT p

7079 IF flag > @ THEN LET inc = inc + 1: GO TO 7005

7080 RETURN

So, in retrospect, add has required rather a lot of effort. But it’s probably the trickiest of
the menu routines.

123

DELETE

124

We'll freewheel downbhill for a bit by writing delete.

600 INPUT “How many keys”; nr

(find key field limits and
ELERCe Sl s use this to dimension
620 DIM d$ (nr, end — begin + 1) correct size array)

630 FORp=1TOnr i
« : | set up array of keys
640 INPUT “Enter deletion (key only):”; d$ (p) 1o deletein d$
650 NEXTp]
660 GO SUB read
670 IFr$ (TO2) = “}}” THEN GO SUB close:
RETURN]
680 FORp=1TOnr search for a match
) between the key of r$
690 IF r$ (begin TO end) = d$ (p) — and an entry in d$. If
THEN GO TO 660 one is found, get next
record.
700 NEXTp N
710 GO SUB write —1 No match found, so
— write out the record . . .
720 GO TO 660 —1 and get another one.

Onward, ever onward . . .

SEARCH

Before rushing in where angels fear to tread, we should give some serious thought to how
the search routine ought to behave. The simplest thing to do, would be to allow the user
to enter a single key, and then read through the file, displaying on the screen every entry
with that key. To decide whether this will be adequate, try to put yourself in the position
of the user and imagine the kinds of questions he might want to ask. Let’s return to the
bank account file as a convenient example. If there’s a field which indicates whether an
item is tax deductible, then the user might well wish to display all records with this field
set to “yes””. On the other hand, he might want to display all records referring to cheques
drawn for more than £200, or all cheque numbers greater than 318472, or cheques
between 8th July 1981 and 5th September 1981. In other words, he is very likely to want
to consider a range of keys rather than just one. So we should allow both these facilities.
Secondly, will he always want to display records found by the search? Certainly, he is at
least as likely to want them printed. But there’s another possibility which will drama-
tically improve the usefulness of the system without any significant perspiration (well,
extra perspiration) on our part. It is to allow records found by the search to be written to
a new file. This way, successive searches can be used to isolate combinations of con-
ditions. For instance, if we need a list of all tax deductible items over £100 in value, we
first generate a new file of tax deductible items, and then we search this for all items over
£100.

I said this was simple to arrange; all it entails, having found a target record, is to call
outrec to display it, loutrec to print it, or write to output it to file.

So let’s get to it:

800 GO SUB extractkey

810 IF ctype THEN DIM k$ (end — begin + 1): INPUT “Target key:"’; k$
820 IF NOT ctype THEN INPUT “Key range—low:"; low, “high:”’; high

A little explanation is needed already. Obviously, the first job is to find out which field is
to be used as the key for the search, hence the call to extractkey. Now, if the chosen key is
a character field, the concept of a range is pretty meaningless (unless you want to deal
with a range of alphabetic keys, like all names between BROWN and ROGERS, but I'm
not allowing for that here. It’s easy enough if you need to do it.) So we only ask for a
single target key (which must match the length of the corresponding field in the
record—hence the DIM!). If, however, the key is numeric, we ask for a range of keys.
Next, we need to know which output option is to be selected:

830 INPUT “Display (1), Print (2) or File (3):”; opt

Now we can start the search:

840 GO SUB read

850 IFr$(TO?2) = “}}" AND opt =3 THEN GO SUB close: RETURN

860 IFr$(TO?2) = “}}” THEN INPUT “Enter c to continue’’; k$: RETURN
That’s a slightly untidy piece of code. The problem is that, on identifying the end of file
there are two possibilities; if there’s no output file, we want just to return to the menu,
but if there is one, we have to close it first. The alternative would have been either to
jump outside the loop on identifying the end of file marker, and then test for option 3, or
to call a subroutine to handle the two conditions. I don’t like jumping unless I'm
absolutely forced into it (it can easily produce code which can most kindly be described
as baroque) and a subroutine seemed a bit like overkill, here. (The problem arises
because Spectrum BASIC does not have an ELSE clause to it’s IF statement. Some
BASICs allow you to say: IF this THEN that ELSE the other. This is quite useful

sometimes, because the Spectrum equivalent is to have two IF statements. It’s already
occurred several times, although this is the clumsiest example so far.)

COMPARISONS

Enough of this nitpicking. (The BASIC is lovely, really—honest, Uncle Clive!)

870 IF ctype THEN GO SUB ckeytest

880 IF NOT ctype THEN GO SUB nkeytest
Now we really do need a couple more subroutines, because the method of handling the
character and numeric comparisons is going to be significantly different. ckeytest will do
the string comparison, and nkeytest will do the numeric one. All they need to returnis a
single value “match’ which is 1 if a match was found and zero otherwise. Then we have:

890 IF NOT match THEN GO TO 840 get next record

895 LET bs = begin: LET es = end

900 IF opt = 1 THEN GO SUB outrec

910 IF opt = 2 THEN GO SUB loutrec SiEaeRsil

appropriate device

920 IF opt = 3 THEN GO SUB write

925 LET begin = bs: LET end = es

930 GO TO 840 get next record

Note that we have to save “begin’’ and “end”, because they are altered by outrec.
We now have two little routines to write:

ckeytest 6800
nkeytest 6600

125

126

ckeytest is easiest, since there’s no range to worry about, only a single key:

6800 LET match =0
6810 IF k$ = r$ (begin TO end) THEN LET match = 1
6820 RETURN

Now for nkeytest:

6600 LET match =1
6610 IF VAL r$ (begin TO end) < low OR

VAL 1$ (begin TO end) > high THEN LET match = @
6620 RETURN

So in ckeytest I've assumed there is no match, and then set match to 1 if there is one,
whereas in nkeytest I've assumed there is a match and reset match to zero only if the key
of the test record is less than the lowest key in the range or greater than the highest key in
the range.

Now I have a confession to make. The delete routine only really works for c type keys,
because line 690 does a straight string comparison. You probably wondered about this at
the time.

The reason I chose to do this is that search provides a more powerful way of
performing deletions.on numeric keys. After all, searching for a range of keys is exactly
the opposite of deleting those keys (using the “write” option in search), so for example,
to delete all records with keys below 50, we just search for records with keys 50 or
greater. You could provide more complex range tests very simply by expanding nkeytest
to include a second range, low2 to high2, say. That way, you could delete all records with
keys between two values. (This can be done with the current implementation, but it
means generating two subfiles.)

MORE FUNCTIONS

What other options might be necessary, or at least desirable? Well, how about /ist, which
would copy the entire input file? This could be useful, but usually we can get away
without it by using search, choosing a numeric key, and giving a range which we know
exceeds the actual range of values in the key field. Since we know the field width, we can
guarantee to be able to do this. Now, you may wish to argue that it is unreasonable to
expect the user to indulge in this kind of sleight of hand, and I am inclined to agree; but
this suite of routines is beginning to get quite large, and if you’ve only got a 16K memory,
the size of your file buffers is beginning to be squeezed. So we should have a very good
reason for wanting any new options. Of course, if you’ve got a 48K machine, you can go
on inventing new and even more esoteric routines as the whim takes you.

There is, however, one more routine which should unquestionably be present. We
should be able to add together the contents of a given numeric field in every record.
Remember that when I was discussing the bank account example I suggested that debits
should be entered as negative and credits as positive? If we could simply sum all those
fields it would give us a current balance. Clearly a useful facility!

We’ll make this option 5, so we need:

44 PRINT AT 7, 11; “5) sum”
and so the routine will begin at line 1000, and we’ll start by initializing the sum:
1000 LETsum =0
Now we find out what key we’re to work with:
1010 GO SUB extractkey

and check that the key is numeric. Otherwise we can’t do arithmetic with it:

1020 IF ctype THEN PRINT “Key not numeric”’: PAUSE 120: RETURN

Now all we have to do is read each record of the file, adding the contents of the key field
into sum at each stage:

1030 GO SUB read

10490 IF r$ (TO2) = “}}” THEN PRINT “Sum of (I”; k$; “= (O0”; sum: INPUT
“Enter ¢ to continue”’; k$: RETURN

1050 LET sum = sum + VAL r$ (begin TO end)

1060 GO TO 1030

Only one point needs any comment here. If a RETURN were executed immediately
after the PRINT on line 1040, you would have to be rather quick to see anything because
of the CLS which lurks at the beginning of the menu display. So the INPUT statement
just provides a way of hanging up the system until the user is ready to go on. The PAUSE
120 in line 1020 is there for the same sort of reason. In fact a PAUSE could be used in
both cases, because PAUSE 65535 will hang up the machine for around 21 minutes, or
until a key is hit, so for all practical purposes, the effect is the same.

TIDYING UP

And that’s about as far as I'm going to take you on this particular excursion into file
handling. As I've already remarked, adding new routines to the data management
system isn’t going to be difficult and neither is the revision of existing ones to account for
minor modifications in requirements. For instance, when you get your microdrives, it
should be very easy to revise the system appropriately and the resulting program will, of
course, be much easier to use, since the Spectrum will handle disk control for itself.

Nevertheless, no piece of software is ever perfect, even within limited terms of
reference, and I certainly make no grand claims for this one. So I'll just make a few
suggestions for revisions that you might like to make that will pretty things up a bit.

First, a point about cfs itself. cfs requires the user to know about the “}}” delimiter.
We're forever writing:

IFr$ (TO2) = “}}” THEN. ..

We could build that test into read by having a variable called eof (for “‘end of file””) which
is set to zero in initcfs and then set to 1 in read if the first two bytes of r$ are ““}}”’. Then a
user program could write:

IFeof THEN.. ..

which is altogether neater.

Second, the messages issued to request control of the tape recorders are messy (no pun
intended!). It would have been better to write four subroutines recon, recoff, playon,
playoff so that the same messages are always generated in similar circumstances. Also,
it’s then easy to revise the messages if necessary, or even to replace them by signals sent
to a port to control the cassette motors directly, as I suggested earlier (see Appendix B
for details of this). Simple revisions of the messages could include making them flash so
that they’re more obvious; adding a BEEP for the same reason; adding a PAUSE (so
that a RETURN to the menu doesn’t clear the message too fast).

Third, there is no check in setup to ensure that field names begin with either “c’” or
“n”. Obviously that’s vital, because the rest of the system assumes it to be the case.
There are other situations of a similar nature where tests ought to be included. (For
instance what happens if you give extractkey a field name which doesn’t exist?)

Finally, at the moment you can’t actually exit from the menu. Obviously, it’s easily
done by having an option 6 (exit) and making line 120 STOP. I didn’t do so earlier,
because, of course, every time you add a new option, the exit option value moves up one,
and the STOP statement moves up 200.

127

128

SORTING A FILE

Just to round off this section finally, I'm going to leave you with a problem.

There is one glaring omission from our data manager. Any self-respecting system
should allow a file to be resorted on a new key, so that, for instance, we could take a field
ordered alphabetically on a “name” field and reorder it numerically on, say, a “tele-
phone no.” field.

I've avoided this problem because it’s not too easy to solve using only one input tape.
In the days when large computer installations commonly used magnetic tape a popular
technique was the grandly named “‘polyphase merge sort™".

What happened was that you had two input and two output tapes. You read a record
from one tape, and then compared it with records from the other, writing them out to
one of the output tapes until one appeared which had a key greater than that of the
reference record. Then you switched input and output tapes and repeated the process.
When both input files had been read completely, you used the output files as a new set of
input files, and the whole process was repeated. Eventually, after umpteen repetitions,
only one of the output files is written to, and the switch never takes place. Then you
know you’ve got a sorted file.

Sounds complicated? That’s what I think; and now you know why I haven’t addressed
the problem till now. (Although, in a sense, the addition routine uses a kind of merge
sort, using the input file and the addition buffer as equivalent to two input tapes; the
difference is that these two inputs are guaranteed to be separately sorted before we
start.)

So, is it possible to do a tape file sort with only one input tape? Well, yes it is, and there
are several well-known algorithms. But there’s one that I discovered recently which will
suit our purposes very well, because it enables us to use the block structure built into cfs.
(I say “‘discovered” rather than ‘“‘invented” because, although I've never seen it des-
cribed in print, it’s such a simple technique that I'm sure it must have been used before.)

RATCHET SORT

It works like this:

We pull in the input file, block by block, bubble-sorting each block before writing it
out to the output file. Now, if that were all we did, nothing very exciting would happen
because, although the file would be locally sorted, there could easily be a low key at the
end of the file which cannot move back beyond the beginning of the last block however
many times the process is repeated. In fact, nothing new will happen if we use this
technique to resort the output file. The reason is, of course, that the partitions between
blocks remain in the same place, so records can only move within, not between, blocks.
If only we could change the positions of the block boundaries . . .

Actually, it’s easy. Before transferring the first block to the output file, we write a
number of dummy records to it. For best results, this number should be half the number
of records per block. On reading the newly located file, the block boundaries are now
half-way between their previous positions, and this “overlap” allows further sorting to
take place. We must ensure that the dummy records are ignored by the sort, and that
they are suppressed on output so that the block boundary positions are again changed to
allow another sort operation. On the next phase of the sort, the dummies are reinserted,
and so on, and so on. We know we’ve finished when no further swaps take place.

Here’s an example which illustrates the principle. I'll just write the keys for simplicity,
as the numbers 1-12 in reverse order. We’ll assume a block size of 4:

2 11 10 9,8 7 6 5,4 3 2 1

1st pass: Sort blocks and insert 2 dummy records:

EDD 9 190 11 12 5 6,7 8 1 2 3 4

2nd pass: Sort blocks and suppress dummies:

[91056:1112127834

3rd pass: Sort blocks and insert dummies:

ID D 5 6,9 10 1 2 11 12 3 4

L | 1

~
o s}

4th pass: Sort blocks and suppress dummies:

[s 6 1 2,9 10 3 4 11 12 7 38

1

Sth pass: Sort blocks and insert dummies:

[Db D 1 2,5 6 3 4,9 10 7 8 11 12

6th pass: Sort blocks and suppress dummies:

1 2 3 4 5 6 7 8 9 10 11 12

and we're there!

Provided there’s enough spare memory, there’s no reason why the block used for
sorting should be the input buffer, in which case, there’s no reason why it should be
restricted to the block size for the file. Obviously, the number of passes necessary for the
sort decreases as the block size increases.

I'll leave the actual coding to you.

of a database you can
squeeze into it ”

129

130

If you thought Canopus was a tin
of cat-food, readon . . .

I8 Star Charls

This item will involve a fair amount of time spent inputting data—especially if you decide
to extend it. So don’t start unless you’ve a couple of hours to spare, because it’s a
nuisance stopping in the middle.

The idea is to write a program that plots out pictures of different constellations—
Orion, Cygnus, Gemini, and so forth. It will include as options:

1. An automatic run-through of the pictures, naming them.
2. A search by name for a given constellation, plotting it out.
3. A test: the computer draws out a constellation and the user has to name it.

For this illustration I'll only put six constellations in; but the program will be set up to
allow up to 20. If you want more than that, SAVE the data on tape, redimension the
arrays used to hold the data, and LOAD the data back. (You’ll need to think that
through in more detail, but that’s the general idea.)

DATA STRUCTURE

Switch the computer off for a minute, because we’re going to have to do a little
brainwork first. “Program first, ask questions later” is a recipe for disaster.
We will need data for:

1. Latin name of constellation (Ursa Major, etc.).

2. English name of constellation (Great Bear).

3. Positions of the stars (lots of coordinates for PLOT).
4. Magnitude (degree of brightness) of each star.

You could go further (e.g. colour of star, suitably exaggerated for a pretty display), but
these will do to start with.

Leaving aside for a moment the problem of actually laying hands on the required
information, and getting it into the machine, we must first decide how to format the data.
Obviously we want to hold the names in arrays; so for 20 different constellations we need
to set up two string arrays of size 20, say n$ for the Latin name and e$ for the English
name.

We’ll also want to print out things like

Cygnus (the Swan)

Now the problem with string arrays is that all of the strings in them have a fixed length.
Suppose we’ve set that length to 12, say, to allow for names like “Camelopardus” (the
Giraffe); and that Cygnus is item number 1. It’s not very satisfactory to use the obvious

PRINT n$ (1); “0 (the O0”; e$ +)~
because you’ll get something like
Cygnus OO O0O0O0O(theSwanOO OO OOOO)

with the spacing all up the shoot.
There’s a useful trick to avoid this. To each string we add a final, thirteenth character,
whose code gives the actual length that we want to use. So “Cygnus” goes in as

CygnusOOOO0OOOx

where the ¥ is actually the character whose code is 6, the length of “Cygnus”. (This is the
control character PRINT comma, but everything’s fine as long as we don’t try to print it
out.) To print out the name “Cygnus”, we use

PRINT n$ (1) (TO CODEn$ (1, 13))

which omits the unwanted spaces.

We use the same trick on the English names e$, of course; and we have to be careful to
write the input and output routines to take this feature into account.

The obvious way to set up the coordinates for the stars within a constellation, and their
magnitudes, is as an array. It needs one dimension of 3 to allow for horizontal co-
ordinate, vertical coordinate, and magnitude; one dimension of (say) 20 to allow up to 20
stars per constellation; and one dimension of 20 to say which constellation were thinking
of. That leads to a command

DIM p (3,20, 20)

However, that would require 3 X 20 x 20 blocks of memory, each 6 bytes long (for a
floating-point number), or 1200 x 6 = 720 bytes. Now a 16K Spectrum has about 9,000
bytes spare after taking care of the display and attribute files, and by the time the
program has gone in, and the other data, and room for the machine to do its calculations

. well, we’ll probably run out of memory. Think again.

It’s really stupid to store the coordinates in floating-point: we can only PLOT x, y
when x is an integer between @ and 255, and y is an integer between @ and 175. Now @255
is, by a strange coincidence, the range of character codes . . . So, using a singl€ character
and taking its code, we can get the x-coordinate. Similarly for the y-coordinate and the
magnitude.

Each star thus takes up three characters. Twenty stars take up 3 X 20 = 6@, which can
conveniently be stuck end to end as a string. For 20 constellations we can use:

DIM p$ (20, 60)

which takes up only 200 X 60 = 1200 bytes—an impressive degree of shrinkage.
Putting that lot together, we get the following input routine. (The actual program

comes later.)

9000 REM input routine—can be deleted after use

9010 DIM n$ (20, 13): DIM e$ (20, 13): DIM p$ (20, 60)

920 FORi=1TO20

9030 INPUT “Latin name?”; a$

9940 LETn$ (i) = a$: LET n$ (i, 13) = CHR$ LEN a$

9950 PRINT TAB 0; n$ (i) (TO CODE n$ (i, 13));

9960 INPUT “English name?’; a$

9970 LETe$ (i) = a$: LET €$ (i, 13) = CHR$ LEN a$

99890 PRINT TAB 14; e$ (i) (TO CODE e$ (i, 13)) '

9999 LETc=1

9100 INPUT “horiz, vert, mag”; x, y, m

91190 IFx =@ THEN GO TO 9150

9120 LETp$(i)(3*c—2TO3+*c)=CHRS$x + CHR$y + CHR$ m

9130 LETc=c + 1:IF ¢ > 20 THEN GO TO 9150

9140 GO TO910%

9150 NEXTi

131

132

THE DATA

The next step is to get the data into the machine. I'll explain later how to work it out for
other constellations; and you may decide to skip over this section for the moment, to see
the rest of the program.

RUN the input routine, and key in the following when asked. Each line represents the
response to an input prompt: note that you need to ENTER each item on the line
separately. The screen format won’t be quite the same. ENTER 0, 0, @ to stop.

Cancer
Crab
95 54 4
111 141 4
113 87 4
115 96 4
149 42 4
156 89 4
Cygnus
Swan
64 120 4
72 36 3
74 85 4
76 76 4
91 107 4
104 54 2
105 66 4
114 111 1
122 36 4
124 86 2
139 123 4
142 118 4
161 50 4
168 100 3
179 146 4
188 156 4
192 26 3
Gemini
Twins
66 113 1
68 94 3
76 106 4
78 132 1
88 111 4
97 82 3
100 54 3
105 123 4
118 76 4
124 144 3
140 100 3
143 36 3
152 54 2
162 76 4
168 87 3
178 89 3
193 94 4

Lion
28 90 2
56 49 4
58 74 4
72 97 3
76 122 2
78 53 4
92 118 4
100 139 4
120 52, 4
144 119 2
150 128 3
153 57 1
158 91 3
181 149 4
188 126 3
188 52 4
204 121 4
216 152 4
Orion
Hunter
78 133 4
86 121 1
104 32 2
108 72 2
110 106 4
113 136 3
115 76 2
118 Sil 3
120 81 2
126 117 2
128 94 4
130 71 3
134 44 4
142 50 3
144 100 4
148 43 1
154 100 3
154 60 3
171 116 4
172 124 3
C Zx—71
/_\< /"‘
LEO 1
. \/ E_‘:'?\b‘" \ The Crcket

133

134

Ursa Major

Great Bear

27 131 2

56 140 2

73 134 2

94 128 3
104 116 2
106 87 4
124 21 3
126 15 4
133 70 3
136 142 2
137 118 2
173 60 3
176 66 3
176 140 4
180 156 4
183 117 4
200 112 3
211 162 3
225 103 3
226 109 3

Now, if you're still with me, SAVE this lot before you accidentally lose it all. The easiest
way is to SAVE the whole thing, loading routine and all; this has advantages if you want
to load anything else in later. Or you can use array storage: this takes three goes, using:

SAVE “Latin” DATA n$ ()
SAVE “English” DATA €$ ()
SAVE “Stars” DATA p$ ()

which load back using similar instructions, but with LOAD in place of SAVE.

CHECKS AND CORRECTIONS

If you make a mistake while doing this, all is not lost. Suppose the fifth star in Leo is
wrong. Then you type in the direct command

LETi=4:LET c=5: GO TO 9100
type in the corrected version of x, y, m; then STOP. To check your input, use this
routine:
9500 FORi=1TO20
9510 PRINT n$ (i) (TO CODE n$ (i, 13))
9520 PRINT e$ (i) (TO CODEe$ (i, 13))
9530 FORt=1TO6ASTEP 3
9549 IF p$ (i, t) = “¢” OR p$ (i, t) = “00” THEN GO TO 9570
9550 PRINT CODE p$ (i, t); “007; :
PRINT CODE p$ (i, t + 1); “07; :
PRINT CODE p$ (i, t + 2)
9560 NEXT't
9570 NEXTi

Only use this if you’re worried about your accuracy: if you've checked the display on
screen during the input run, very carefully, it shouldn’t be necessary.

Change each PRINT to LPRINT, if you’ve got a printer, and you’ll have a hard-copy
listing for reference.

WORKING OUT THE DATA

If you want to add extra constellations, you’ve got to find out what numbers to input.

The simplest way is to draw out the desired constellation on a piece of graph paper,
with a 256 X 176 grid marked on it. (I actually used a 64 x 44 grid and multiplied by 4.)
Start with a reference work on astronomy: Norton’s Star Atlas, published by Gall and
Inglis, is a good one. Copy the stars on to tracing-paper, transfer the result to your grid;
and laboriously read off the coordinates, checking the star atlas to find the magnitude.
See Figure 18.1 for Leo.

WT EEEER %IL “ UE i i -..llllrllf”.lr*l - H

o HER R A e q HH

e e R

RS S WA N SS BESABHARESS SUNNE TRRES NS S SEARE SAREE HULE & HH

*‘—"—714 =11 wﬁfilwl 1'?" 4ﬂ1

i ITHTII? B e IRy p e ay Ruun) i 1%:]

A : "?Mﬂg A

P e T

S aamamaEy T :H T

AR E2Sansis: SiapasEanadiee

o’ s SNSRI R NN SN SEENEEEEEE A NS RN B

- i 5 RWAE v ‘}‘:it‘:lo: MH,}‘;EH![[HW

e e E T

o it N T ! . tA *T 1+ fi T‘} -4

T e e TR

= e e P P e THHE R

I o e A AEa A SN AaN SN NN EERA RS TR RaY

1 O 8 NN SR TN RSN B EEES RERN

o LIt A T 2288 SesasEsSsSEESssiisssasl
('] 40 80 120 160 200 249

Figure 18.1 Input data for Leo.

our mothers were keen
on movies... so they
named us after

I'm Beetlegeuse ...

..and I'm
Antares !

135

136

Alternatively, draw out the constellation on a transparent sheet and use a version of
the sketchpad method used to draw a map in Chapter 1. You’'ll need to write a little
routine to transfer the pixel coordinates to p$, and to input the magnitude suitably.
That’s a project for you, if you’re keen. The system variable COORDS (Chapter 6) may
prove useful.

Figure 18.2 Screen display for Ursa Major. See the Plough (Big Dipper) at top left?

THE MAIN PROGRAM

You can delete the loading and checking routines, if you wish. Just don’t type RUN, or
you’ll lose the data and have to reload from tape. Use GO TO 1 instead.

Obviously we need a routine to plot out the stars. This one plots a star whose size is
determined by the magnitude m, at pixel position x, y. (Magnitude 1 stars are the
brightest; then 2, then 3, and so on.) The constellation is number i.

8030 REM star plot

8310 PAPER @: INK 7: BORDER §: CLS

8120 FORt=1TO 6@ STEP 3

8030 LETk = CODE pS$ (i, t)

8040 IFk =32O0Rk =48 THEN RETURN

8050 LETx =k:LETy = CODE p$ (i, t + 1):
LETm = CODE p$ (i, t +2)

8060 GO SUB 8500

8070 NEXT't

8080 RETURN

85 REM draw one star
8510 LETs=10—-2*m
8520 PLOTx,y—s:DRAW®,2+s

8530
8540
8550
8560

Now, we wanted three options: automatic list, search by name, and random test. Let’s

PLOTx —s.y: DRAW 2 *5s,0
PLOTx—s/2,y—s/2: DRAWs,s
PLOTx —s/2,y +s/2: DRAWs, —s
RETURN

set up a little menu:

100
110

120

You're an old hand at this game, so I'll leave the fancy formatting to your personal tastes.

130
140

PRINT “Star Charts” "’
PRINT ““‘Options;

1. Automatic List

2. Name Search

3. Astroquiz”
INPUT “Option number?”’; opt

GO SUB 1000 * opt
PAUSE 0: CLS: GO TO 100

Now write the options:

1000
1010
1020

1030
1040
1050

2000
2010
2020
2030
2049
2045
2050

3000
3010
3020
3030

3040

FORi=1TO6

GO SUB 8000

PRINT AT, 0; n$ (i) (TO CODE n$ (i, 13));
“C] (the O0"; €8 (i) (TO CODE e$ (i, 13));)"
INPUT “Hit ENTER to continue”, d$
NEXTi

RETURN

INPUT ““Latin name of constellation?”’; q$

FORi=1TO6

IF n$ (i) (TO CODE n$ (i, 13)) < > q$ THEN GO TO 2045

GO SUB 8000

PRINT AT 0, §; g$; “0J (the O; €$ (i) (TO CODE e$ (i, 13)); “)”
NEXTi

RETURN

LETi=INT (1 + 6 * RND)

GO SUB 8000

INPUT “Which constellation is this?”’; q$

IF g$ = n$ (i) (TO CODE n$ (i, 13)) THEN
PRINT AT, @; FLASH 1; “CORRECT!”

IF q$ < > n$ (i) (TO CODE nS$ (i, 13)) THEN

137

138

PRINT AT 0, @; FLASH 1; “Sorry, wrong answer””:
PRINT AT 1,0, FLASH @; n$ (i) (TO CODE n$ (i, 13))
3050 PAUSE 100: RETURN

To try this out, hit GO TO 1 (remember, nor RUN), and follow the screen instructions.
If you have put more than 6 constellations in, you'll need to change the 6 in lines 1000,
2010 and 3009 to the new number.
Save this using something like

SAVE “Starch” LINE 10

and it will then run automatically on loading, avoiding the danger of wiping out your
variables.

SOLUTIONS TO CRYPTANALYSIS PROBLEM (page 96)

15

(3]

Code abcdefghijklmnopgrstuvwxyz
owgbueplgsznhftkirdjmyvcax

There are nine and sixty ways of constructing tribal lays, and every single one of
them is right.

(Kipling)

Code abcdefghijklmnopqrstuvwxyz
btgpxeuqfwocvzyasnrlkhidjm

Age cannot wither her, nor custom stale her infinite variety. Other women cloy the
appetites they feed.
(Shakespeare)

Code abcdefghijklmnopqrstuvwxyz
zvetrsnbjpkcuxdfgayohlqimw

When a man has married a wife he finds out whether her knees and elbows are only
glued together.
(Blake)

Code abcdefghijklmnopqrstuvwxyz
jkyqzfclotsndxuiegmvwrabhp

Nature’s great masterpiece, the elephant: the only harmless great thing.
(Donne)

Of course. you won't be able to work out the entire code: only the letters actually used.

139

Appendices

142

Appendix A: The Cassetie Hle System—
A Reference Description of cfs

Although, in this book. c¢fs has been used solely inside sdm (the Spectrum Data
Manager), there is, of course, no reason why you shouldn’t build it into other programs.
To do so, you simply enter all the cfs routines, together with their identifiers and starting
line numbers, and save it as a program called “cfs”. When you’ve entered the program
which uses cfs, you simply enter:

MERGE cfs

and play the ““cfs” tape, as if you were doing a normal LOAD. The effect is to combine
the program in memory with that on tape, providing a neat way of getting ¢fs (or any
other set of utility routines) into any program.

Of course, the main program must not use any of the line numbers that cfs uses. and
care must be taken not to allow conflicts in the use of variable names (otherwise it’s too
easy to set q to 1, call a subroutine, and then find that q has mysteriously become 14).
This appendix provides the information necessary to avoid such conflicts.

A complete listing of cfs is given, together with descriptions of the actions of each
routine. and variable names used by it. Note that the listing is not identical with that
given in the text. The improvements discussed elsewhere have been made. and some
renumbering has been done.

LINE NUMBERS

¢fs uses line 1 and all line numbers from 9000 upwards.

VARIABLE NAMES

The names used by cfs can be divided into four types:

1. Global
A global variable is one which may be used by a number of cfs routines, and con-
sequently must never be redefined by the user program.

For instance, initcfs sets up an array called n$ which holds the names of the fields in the
files. If the user redefines it anywhere in his program, all field names will immediately
become blank strings!

2. Local

These are names which are used by a c¢fs routine, but have no significance outside it. The
user program may use such names provided it does not need their values preserved
across a call to the cfs routine which uses them locally. For instance, inrec uses p and c as
loop counters. If we write:

FORp=1TO4
GO SUB inrec
NEXT p
the loop will only be executed once if the p-loop in inrec was executed four or more
times!
But writing:
FORp=1TO4
do something else
NEXT p
GO SUB inrec

is perfectly legitimate.

3. Parameters passed to cfs routines
These are the names of variables which ¢fs is to work with. For instance, r$ must be
passed to write for its contents to be output.

4. Parameters returned by cfs routines
These are the names of variables which a c¢fs routine generates for subsequent use by the
user program. For instance, r$ is returned by read.

GLOBAL VARIABLES
Name Use
bpr Number of bytes per record
eof End of File flag; @ = not end of file, 1 = end of file
f$ Name of input file
g8 Name of output file
ip pointer to next record in input buffer
i$() 2D array acting as input buffer. Size determined by
w (1) and bpr
inbc Current input block number
n$ (11, 10) array holding names of up to 19 fields per record.

Each field name may be up to 10 bytes long

op Pointer to next record in output buffer
o$() 2D array acting as output buffer. Size as for i$
outbc Current output block number
switch Set to zero when no recorder is activated; set to 1 if
arecorder is activated
w(11) Array holding the field widths, in bytes, of the fields
named in n$. w (1) holds the number of records per block
ROUTINE DESCRIPTIONS
close
Action Writes file delimiters to output buffer
Parameters passed to close None
returned None
Global variables affected None (but note that r$ is overwritten)
Local variables None
cfs routines called write
Listing

9740 LETr$ = “}}”
9750 GO SUB write
9760 LET r$ = “cfsend”
977¢ GO SUB write
9780 RETURN

getblock
Action Inputs a file block
Parameters passed to getblock None
returned None
Global variables affected inbc, i$, ip
Local variables m$
cfs routines called mesp

143

144

Listing
9800
9810
9820
9825
9830
9840
9850
9860

initcfs

Action

LET m$ = STR$ inbc

GO SUB mesp

LOAD f$ + m$§ DATAi$ ()
POKE 23692, 255

GO SUB mesp

LETip=1

LET inbc = inbc + 1
RETURN

Initializes the system and sets up file
names and descriptions. Dummy files are
named “null”

Parameters passed to initcfs None

returned None

Global variables affected n$, w, ip, op, inbc, outbc, bpr, eof, switch,

f$, g3, i$, o$

Local variables p
cfs routines called setup, mesp, mesr, reset

Listing

9500
9505
9510
9514
9515
9520
9521
9525
9530
9535
9540
9545
9547
9548
9550
9555
9557
9560

inrec

Action

DIM n$ (11, 10): DIM w (11): LET bpr = 0: GO SUB reset
INPUT “Enter input file name”’; f$

IF f$ = “null” THEN GO SUB setup: GO TO 9525
GO SUB mesp

LOAD f$ + “h1” DATA n$ ()

LOAD f$ + “h2” DATA w ()

GO SUB mesp

INPUT “Enter output filename’; g$
FORp=2TO 11

LET bpr = bpr + w (p)

NEXT p

DIM i$ (w (1), bpr): DIM o$ (w (1), bpr)

IF g§ = “null” THEN RETURN

GO SUB mesr

SAVE g$ + “h1” DATAn$ ()

SAVE g$ + “h2” DATA w ()

GO SUB mesr

RETURN

Prompts for a record entry from the key-
board, field by field, and packs the result
into r$

Parameters passed to inrec None

returned r$
Global variables affected None
Local variables a$, begin, p, ¢, end
cfs routines called None
Listing
900¢ DIM a$ (bpr)
9010 CLS: LET begin = 1
920 FORp=2TO11
9925 TIFn$ (p, 1) = “0O0” THEN GO TO 9120
9930 PRINT AT p, ®; n$ (p, 1); “:”; AT p, 4; n$ (p) (2 TO)
9340 FORc=1TOw (p)
9950 PRINT ATp, 14 +c;“"
960 NEXT ¢
9070 LET end = begin + w (p) — 1
9080 INPUT (n$ (p) (2 TO)); a$ (begin TO end)
9090 PRINT AT p, 15; a$ (begin TO end)
9100 LET begin =end + 1
9110 NEXTp
9120 LETr$ = a$
913 RETURN
mesp
Action Displays a prompt to turn PLAY recorder
on or off
Parameters passed to mesp None
returned None
Global variables affected switch
Local variables None
cfs routines called None
Listing
9140 PRINT INVERSE 1; “Start” AND NOT switch; “Stop”” AND switch;
“play recorder”
9150 BEEP .2, 15: PAUSE 6: BEEP .3, 20: PAUSE 80
9160 LET switch = NOT switch
9170 RETURN
mesr
Action Displays a prompt to turn RECORD
recorder on or off
Parameters passed to mesr None
returned None
Global variables affected switch
Local variables None
cfs routines called None

145

146

Listing

9300

PRINT INVERSE 1; “Start” AND NOT switch; “Stop” AND switch;

“recording”

9310 BEEP .2,20: PAUSE 6: BEEP .3, 15: PAUSE 80
9320 LET switch = NOT switch
9330 RETURN
outrec
Action Displays record in r$ in fields on the screen
Parameters passed to outrec $
returned None
Global variables affected None
Local variables p, begin, end
cfs routines called None
Listing
9200 LET begin =1
9210 FORp=2TO 11
9215 IFn$(p,1) = “00” THEN PRINT: RETURN
9220 PRINT n$ (p, 1); “:”; TAB 4; n$ (p) (2 TO);
9240 LETend = begin +w (p) — 1
9250 PRINT TAB 15; r$ (begin TO end)
9260 LET begin =end + 1
9270 NEXTp
9280 PRINT: RETURN
putblock
Action Outputs a block: to tape
Parameters passed to putblock None
returned None
Global variables affected op, outbc
Local variables m$
cfs routines called None
Listing
9900 LET m$ = STRS outbc
9910 GO SUB mesr
9920 SAVE g$ + m$ DATA 0$ ()
9930 GO SUB mesr
9949 LETop=4¥
9950 LET outbc = outbc + 1
9960 RETURN
read
Action Read a record into r$

Parameters passed to read None

returned r$
Global variables affected ip, eof
Local variables None
cfs routines called getblock

Listing

9600 IFip = @ OR ip > w (1) THEN GO SUB getblock
961@ IFi$ (ip) (TO 6) = “cfsend” THEN PRINT “Attempt to read past end
of file”: STOP
9620 LETr$ =1i$ (ip)
9625 IFr$(TO2) = “}}” THENLET eof = 1
9630 LETip=ip+1
9640 RETURN
Comment: Note that eof is set to zero by reset. So if an input file is to be reread without
asecond call to initcfs, and the test for end of file is of the form IF eof THEN

. itis necessary to insert GO SUB reset at the beginning of the reread.
This will also reset the buffer pointers and counters correctly.

reset
Action Sets buffer pointers, file flags etc.
Parameters passed to reset None
returned None
Global variables affected ip, op, inbc, outbc, eof, switch
Local variables None
cfs routines called None
Listing

9970 LETip=0:LET op = 0: LET inbc = 0:
LET outbc = @: LET eof = @: LET switch = @
998) RETURN

setup
Action Allows the user to define record and block
formats
Parameters passed to setup None
returned None
Global variables affected n$, w
Local variables nf, p
cfs routines called None
Listing

940¢ INPUT “Enter no. of fields”; nf
9405 CLS
9419 FORp=2TOnf+1

9415 PRINT AT 19, 2; “Field O”; p—1
942 INPUT ‘““Name of field (1st char: ¢/n):”; n$ (p)

147

148

9422

IF n$ (p. 1) < > “c” AND n$ (p, 1) < > “n” THEN GO TO 9420

9425 INPUT “No. of bytes:”; w (p)

9430 NEXTp

9435 CLS

9440 INPUT “No. of records per block:"; w (1)

9445 RETURN
write
Action Werites a record in r$ to file
Parameters passed to write r$

returned None

Global variables affected op, o$
Local variables None
cfs routines called putblock
Listing

970 LETop=op+1

9710
9720
9730

LET o$ (op) = r$
IF op = w (1) OR r$ = “cfsend” THEN GO SUB putblock
RETURN

INITIALIZATIONS ON LINE 1

1

LET close = 9740: LET getblock = 9800: LET initcfs = 950(:
LET inrec = 990): LET mesp = 9140: LET mesr = 9300:
LET outrec = 920@: LET putblock = 990¢: LET read = 9600:
LET setup = 9400: LET write = 9700: LET reset = 9970

Appendix B: Automatic Cassetie Conirol

It has already been pointed out that, in principle, there is no difficulty about controlling
cassette motors automatically. Here is a specific technique for doing so.

A suitable I/O port is the ZX Spectrum PPI port marketed by Kempston (Micro)
Electronics. This has three 8-bit ports on it which can be programmed to act as input or
output ports, or combinations of the two. So far as we are concerned here, only 2 bits out
of the available 24 are needed! So we’ll select the low bits (bit @) of ports B and C to
control the PLAY and RECORD cassettes respectively. (This is because the connec-
tions to the sockets for these ports are the same, whereas those for port A are slightly
different.)

The port cannot be used to drive a relay directly, since only very small currents may be
drawn (TTL levels). So the output is used to switch a transistor, as shown in Figure B1.

Cassette

Remote Relay coil (120 ohms minimum)

Jack

+12V
Relay

contacts
Port B (or C)
1K6
P |]
Bitno.»| 7 0 = BC197
e e o e o v
Figure Bl

The ports are initialized as output mode by the statement:
OUT 127, 128

This can be inserted at the beginning of initcfs.

It is then necessary to turn on PORT B bit @ to activate the PLAY cassette, and to turn
on PORT C bit @ to activate the RECORD cassette. To do this, we just replace the
subroutines mesp and mesr as follows:

mesp: 9140 LET switch = NOT switch
915¢ OUT 63, switch

9160 RETURN

mesr: 9300 LET switch = NOT switch
9310 OUT 95, switch
9320 RETURN
63 and 95 are the addresses allocated to ports B and C, respectively.
The circuit diagram (Figure B1) is based on one devised by Kempston (Micro)

Electronics who may be contacted at 60, Adamson Court, Hillgrounds Road,
Kempston, Bedford MK42 8QZ.

149

150

Appendix C: A User Guide to SDM—
The Spectrum Data Manager

SDM is a simple data management system which allows the use of one input and one
output file. Either of these files may be specified as non-existent by giving it the reserved
name “null”. Records are of fixed length format, and may consist of up to ten fields, each
having a user-defined name and length. A field name may consist of up to ten characters,
the first of which must be either ““c’” or “n”” (lower case only) to indicate whether the field
is of type character or numeric. This distinction is important, because it will determine
how searching of, and additions to, the files are done. For instance, an attempt to search
for records whose third field contains 357 will not find a record whose third field is 357.0
or +357, if the field has been declared of type ““c”. Also, itisillegal to attempt to sum ““c”
type fields.

File names are user-defined. They must obey the normal rules for BASIC file names,
except that they must not exceed 8 characters in length (2 fewer than the BASIC
restriction). If the file is to be very long, it may be safer to impose a limit of, say, 6
characters per name. The reason is that the final filename passed to BASIC is formed
from the user filename plus a block number. In fact the blocks of a file called ““filename”
are:

filenamehl
filenameh2
filename0
filenamel
filename2
etc.

The first two blocks form a header label which describes to the system the record and
field structure of the file. The data blocks follow this, and are labelled sequentially from
zero upwards. Consequently, a file having more than 100 blocks and an 8-character
name will transgress the rules of BASIC and the program will break with error F. In
practice, however, a file of this size is unlikely.

Operations allowed by SDM are:

1. The creation of files.

2. The modification of existing files by adding or deleting records, or by the creation of
subfiles.

3. The searching of files for records having specified attributes.

4. The totalling of all specified numeric fields within a file.

Access to these operations is provided via a menu which is displayed after each operation
is completed. Note, however, that this repetition of the menu is to facilitate several
operations on the same file. If several operations are to be performed, but on different
files, the program must be rerun.

ACTION OF SDM

After SDM has been loaded and RUN entered, the message “Spectrum Data Manager”
is displayed on the screen, followed by a prompt for the input filename. If there is an
input file, this should be loaded into the PLAY recorder and the name of the file
entered. The system will request that the recorder is activated, and will enter the two
header blocks. It will then ask for the recorder to be turned off.

If there is no input file, the word “null” should be entered. The system will then
request a file definition.

The prompts are (in order):

Prompt

Meaning

1. Enter no. of fields

Number of fields in 1 record

These steps 2. Name of field Enter the name of a field ascor n

are repeated (1st char: ¢/n) followed by at most 9 characters,

for each field. e.g. a field containing a name might
The field be “cname”, one containing a bank
number is balance might be “nbal”

dlsplay_eg b 3. No. of bytes This is the maximum number of bytes
an additional S o2 :
prompt which is anticipated to be occupied

by a value stored in the field whose
name has just been given

4. No. of records
per block

For simplicity of operation, this
should be chosen fairly large,
typically 20 or more. However,
memory restrictions and the size of
each record will create a practical
barrier to large block sizes,
particularly for a 16K machine.
Maximum block sizes can fairly easily
be calculated in a given case, but it is
usually easier to choose a value by
trial and error, simply ensuring that
code 4 “Out of memory” does not
occur

The system will then prompt for an output filename. If no new file is to be generated, this
should be entered as “null”. Otherwise a filename should be entered under the same
rules as before. The system will then request the RECORD recorder to be turned on,
and will save the header blocks, after which it will prompt for the RECORD recorder to
be switched off.

The menu will now be displayed as shown below:

Options are:
1) create
2) add
3) delete
4) search
5) sum
6) exit

and the user is prompted to enter one of these (numeric) options.
Each option is now described individually.

1) create

The user is prompted to enter each field of a record in turn. The allowed size of the field
is indicated by the appropriate number of underline characters appearing against the
field name. (The field type is separated from the rest of the name by a colon as in n:bal).
As each field is entered, the record is built up on the screen so that the user can check his
entry. When a record is completed the prompt “Any more (y/n)?” will appear. If there
are further records to be entered the user types “y”, otherwise “n”. In the former case
the procedure will be repeated; in the latter case the user will be prompted to turn on the
RECORD recorder and the file will be closed. (Note that the creation of a file will be

punctuated by prompts to control the recorder as blocks are filled.)

151

152

2) add

The user is prompted for the number of records he wishes to add to the file. These are
then entered in the same way as for the create routine (except that the process is repeated
the specified number of times, rather than a prompt for another addition being issued at
the end of each record entry). They may be entered in any order.

The user is next prompted for the key field name. The name of the field which defines
the order of the records on the file should be specified. This name must not include the
field type (e.g. write “bal” not “‘nbal”’). The new records are now inserted automatically,
with the system prompting the user from time to time to perform cassette control.

3) delete

The user is prompted first for the number of record types to be deleted, and then for the
name of the key field (excluding the type code).

Finally, he is asked to enter each key whose associated record is to be deleted.

For example, suppose it is desired to delete the records of A. BROWN, G.N.
DODDS and P. ADAMS. We enter:

How many records? 3
Enter key field name: name

Input deletion (key only): A. BROWN
Input deletion (key only): G.N. DODDS
Input deletion (key only): P. ADAMS

The system will then respond in a similar way to that to the add routine.
4) search

The user is first prompted for the name of the key field (i.e. that on which the search is to
be made). If this is a c-type key, the next prompt is for a target key. For example, if a field
called ctaxded exists whose contents will be “‘y” if an item is tax deductible, and it is
desired to list out all tax deductible transactions, the answers to the prompts will be:

Enter key field name: taxded
Target key: y

If the key field is an n-type the second prompt requires a range. If only a specific target is
required, both ends of the range should be entered as the same value. For instance, if
there is a field called namount, and we wish to examine all records whose amount field is
exactly 100, then the prompts will appear as:

Enter key field name: amount
Key range—low: 100
high: 100

If, however, the search is for all values greater than or equal to 100 we could enter:

Key range—low: 100
high: 1000

provided that we know that no values greater than 999 can exist. Such a value can always
be chosen because we know the field width, so the above specification is guaranteed to
be correct if namount has a length of 3 bytes. Similarly, if all entries less than some
specified value are required, the “low” value must be set lower than any possible value
(e.g. —100 for a 3-byte field).

The user is finally prompted for the device to which output is to be steered. This may
be the display (device 1), a printer (device 2) or the output file (device 3).

The latter option allows the production of subfiles (e.g. a new file containing only tax
deductible items can be created).

Note that, although there is no “list” option to list the entire file to a printer, search
can mimic this function by using any numeric key with the “low” and ‘‘high” values both
outside the allowable range.

5) sum

The user is prompted for a field name whose contents are to be summed throughout the
file. The field must be numeric, otherwise an error message is printed and the system
returns to the menu. The final total is displayed on the monitor, and the system waits
until a key is hit before returning to the menu.

GENERAL COMMENTS

All the standard operations are performed on the whole file. So a question such as
“What is the total of tax-deductible items?” cannot be answered directly. However, the
problem can be solved by creating a file of tax-deductible items using search, and then
summing the amount fields in the new file.

Similarly, complex searches (example: how many tax-deductible items are there
whose values are between £50 and £100?) can be performed by doing successive searches
and generating a new subfile each time.

153

154

Appendix D: Specirum Dala Manager— Program lisling

The final revised listing of SDM is given below. For simplicity, it includes the cfs
routines; so if you already have these SAVEd, you should not copy lines 1 and 9900-9980
. LOAD them in first, or MERGE afterwards.

0
1

10
20
25
26
30
40
41
42
43

45

100
110
120
130

200
210
220
230
240
250

410
420
430

© Ian Stewart and Robin Jones 1982

LET close = 9740: LET getblock = 980¢: LET initcfs = 9500:
LET inrec = 990@: LET mesp = 9140: LET mesr = 9300:
LET outrec = 9200: LET putblock = 9900: LET read = 96(¢:
LET reset = 9970: LET setup = 9400: LET write = 9700
LET loutrec = 8800: LET extractkey = 7800: LET loosends = 76(0:
LET compc = 7400: LET compn = 7200: LET sort = 7000:
LET ckeytest = 6800: LET nkeytest = 6600

CLS

PRINT AT 0, 5; “‘Spectrum Data Manager”

GO SUB initcfs

CLS

PRINT AT 2, 0; “Options are:”

PRINT AT 3, 11; “1) create”

PRINT AT 4, 11; ““2) add”

PRINT AT, 11; “3) delete”

PRINT AT 6, 11; ““4) search”

PRINT AT 7, 11; “5) sum”

PRINT AT 8, 11; “6)exit”

INPUT “Enter option:”’; opt
GO SUB 200 * opt

GO SUB reset

GO TO26

GO SUB inrec

GO SUB write

INPUT “any more? (y/n)”; q$
IF g$ = “y” THEN GO TO 200
GO SUB close

RETURN

INPUT “How many records?”’; nr
DIM b$ (nr, bpr)
FORq=1TOnr

GO SUB inrec

LETb$ (q) =r$

450
460
465
470
480
490
500
510
520
530
540

610
620
630

650

670
680
690
700
710
720

800
810
820
830
840
850
860
870
880
890
895

910
920

NEXT q

GO SUB extractkey

GO SUB sort

LETap=1

GO SUB read

IF ap > nr OR eof THEN GO SUB loosends: RETURN
LET s$ = r$ (begin TO end): LET t$ = b$ (p) (begin TO end)
IF ctype THEN GO SUB compc

IF NOT ctype THEN GO SUB compn

IF comp < @ THEN GO SUB write: GO TO 480

IF comp > = THEN LET t$ = r$: LET r$ = b$ (p): GO SUB write:
LETr$ = t$: LET ap = ap + 1: GO TO 490

INPUT “How many records?”’: nr

GO SUB extractkey

DIM d$ (nr, end — begin + 1)
FORp=1TOnr

INPUT “Enter deletion (key only):””; d$ (p)
NEXT p

GO SUB read

IF eof THEN GO SUB close: RETURN
FORp=1TOnr

IF r$ (begin TO end) = d$ (p) THEN GO TO 660
NEXT p

GO SUB write

GO TO 660

GO SUB extractkey

IF ctype THEN DIM k$ (end — begin + 1): INPUT “Target key:’; k$
IF NOT ctype THEN INPUT *“key range—Ilow:""; low, “‘high:”; high
INPUT “Display (1), print (2) or file (3):”; opt

GO SUB read

IF eof AND opt = 3 THEN GO SUB close: RETURN

IF eof THEN INPUT “Enter c to continue”; k$: RETURN

IF ctype THEN GO SUB ckeytest

IF NOT ctype THEN GO SUB nkeytest

IF NOT match THEN GO TO 849

LET bs = begin: LET es = end

IF opt = 1 THEN GO SUB outrec

IF opt = 2 THEN GO SUB loutrec

IF opt = 3 THEN GO SUB write
155

156

925
930

1000
1010
1020
1030
1049

1050
1060

1200

6610

6620

6810
6820

7000
7005
7010
7020
7030
7040
7050

7060
070
7080

7200
7210
7220
7230

7400
7410

LET begin = bs: LET end = es
GO TO 840

LET sum =0

GO SUB extractkey

IF ctype THEN PRINT “Key not numeric”’: PAUSE 120: RETURN
GO SUB read

IF eof THEN PRINT “Sum of (07"; k$; “= (J’; sum:

INPUT “Enter c to continue’’; k$: RETURN

LET sum = sum + VAL r$ (begin TO end)

GO TO 1030

STOP

LET match = 1

IF VAL r$ (begin TO end) < low OR VAL r$ (begin TO end) > high
THEN LET match = 0

RETURN

LET match = @
IF k$ = r$ (begin TO end) THEN LET match = 1
RETURN

LETinc=1

LET flag = @

FORp=1TOnr — inc

LET s$ = b$ (p) (begin TO end): LET t$ = b$ (p + 1) (begin TO end)
IF ctype THEN GO SUB compc

IF NOT ctype THEN GO SUB compn

IF comp > @ THEN LET t$ = b$ (p): LET b$ (p) = b$ (p + 1):
LETb$ (p+1)=t$: LET flag =1

NEXT p

IF flag > @ THEN LET inc = inc + 1: GO TO 7045
RETURN

IF VAL s$ < VAL t$ THEN LET comp = — 1

IF VAL s$ = VAL t$ THEN LET comp = 0
IF VAL s$ > VAL t$ THEN LET comp = 1
RETURN

IF s$ < t$ THEN LET comp = —1
IF s$ = t$ THEN LET comp = 0

7420
7430

7600
7610
7620
7630
7640
7650
7660
7670
7680
7690
7700

7800
7810
7820
7830
7840
7850
7860
7870
7880
7890

8800
8810
8815
8820
8850

8870

9010
9020

9030

IF s$ > t$ THEN LET comp = 1
RETURN

IF ap > nr THEN GO TO 7670
FOR p = ap TO nr

LET$ = b$ (p)

GO SUB write

NEXT p

GO SUB close

RETURN

GO SUB write

GO SUB read

IF eof THEN GO SUB close: RETURN
GO TO 7670

DIM k$ (9): INPUT “Enter key field name’’; k$
LET begin = 1

FORp=2TO 11

IFn$ (p) 2TO) = k$ THEN GO TO 7860
LET begin = begin + w (p)

NEXT p

LET end = begin + w (p) — 1

IF n$ (p, 1) = “c” THEN LET ctype = 1

IF n$ (p, 1) = “n” THEN LET ctype = 0
RETURN

LET begin = 1

FORp=2TO11

IF n$ (p, 1) = “00” THEN LPRINT: RETURN
LPRINT n$ (p, 1); “:"; TAB4;n$ (p) 2TO);
LET end = begin + w (p) — 1

LPRINT TAB 15; r$ (begin TO end)

LET begin =end + 1

NEXT p

LPRINT: RETURN

DIM a$ (bpr)

CLS: LET begin = 1

FORp=2TO 11

IF n$ (p, 1) = “0” THEN GO TO 9120

PRINT AT p, ®; n$ (p, 1); “:”; AT p,4;n$ (p) 2TO)

157

158

9070
9030
9090
9100
9119
9120
9130
9140

9150
9160
9170

9200
9210
9215
9220
9249
9250
9260
9270
9280

9300

9310
9320
9330

9400
9405
9410
9415
9420
9422
9425
9430

FORc=1TOw (p)

PRINT ATp. 14 +¢; "

NEXTc

LET end = begin + w (p) — 1

INPUT (n$ (p) 2 TO)): a$ (begin TO end)
PRINT AT p, 15; a$ (begin TO end)

LET begin = end + 1

NEXT p

LETr$ = a$

RETURN

PRINT INVERSE 1; “Start” AND NOT switch: “Stop” AND switch:
“PLAY recorder”

BEEP .2, 15: PAUSE 6: BEEP .3, 20: PAUSE 80
LET switch = NOT switch

RETURN

LET begin = 1

FORp=2TO 11

IF n$ (p. 1) = “00" THEN PRINT: RETURN
PRINT n$ (p. 1); “:": TAB4:n$ (p) 2TO):
LET end = begin + w (p) — 1

PRINT TAB 15. r$ (begin TO end)

LET begin = end + 1

NEXT p

PRINT: RETURN

PRINT INVERSE I[: “Start” AND NOT switch;
“Stop” AND switch; “recording”

BEEP .2, 20: PAUSE 6: BEEP .3, 15: PAUSE 80
LET switch = NOT switch

RETURN

INPUT “Enter no. of fields:”; nf

CLS

FORp=2TOnf +1

PRINT AT 10. 2; “Field O”;p — 1

INPUT “Name of field (1st char: ¢/n):"; n$ (p)

IFn$ (p. 1) < >“c” ANDn$ (p. 1) < > “n" THEN GO TO 9420
INPUT “No of bytes:”’: w (p)

NEXT p

9435
9440
9445

9500
9505
9510
9514
9515
9520
9521
9525
9530
9535
9540
9545
9547
9548
9550
9555
9557
9560

9600
9610

9620
9625
9630
9640

9700
9710
9720
9730
9740
9750
9760
9770
9780

CLS
INPUT “No of records per block:”; w (1)
RETURN

DIMn$ (11, 10): DIM w (11): LET bpr = 0: GO SUB reset
INPUT “Enter input filename:""; f$

IF f$ = “null” THEN GO SUB setup: GO TO 9525
GO SUB mesp

LOAD f$ + “h1” DATA n$ ()

LOAD f$ + “h2” DATA w ()

GO SUB mesp

INPUT “Enter output filename:”’; g$
FORp=2TO 11

LET bpr = bpr + w (p)

NEXT p

DIM i$ (w (1), bpr): DIM o$ (w (1), bpr)

IF g$ = “null” THEN RETURN

GO SUB mesr

SAVE g$ + “h1” DATAn$ ()

SAVE g$ + “h2” DATAw ()

GO SUB mesr

RETURN

IFip = @ OR ip > w (1) THEN GO SUB getblock

IFi$ (ip) (TO6) = “cfsend” THEN PRINT “Attempt to read past
end of file”’: STOP

LET$ =i$ (ip)

IFr$(TO2)=*“}}" THENLET eof = 1

LETip=ip + 1

RETURN

LETop=op +1
LET o$ (op) = r$
IF op = w (1) OR r$ = ““cfsend” THEN GO SUB putblock
RETURN
LET$ = “}}™:
GO SUB write
LET r$ = “cfsend”
GO SUB write
RETURN
159

160

9800
9810
9820
9825
9830
9840
9850
9860

9900
9910

9930
9940
9950

9970

9980

LET m$ = STRS inbc

GO SUB mesp

LOAD f$ + m$ DATAi$ ()
POKE 23692, 255

GO SUB mesp

LETip=1

LET inbc = inbc + 1
RETURN

LET m$ = STRS outbc

GO SUB mesr

SAVE g$ + m$ DATA o$ ()

GO SUB mesr

LETop=0

LET outbc = outbc + 1

RETURN

LETip = 0: LET op = #: LET inbc = 0: LET outbc = @:
LET eof = @: LET switch = 0

RETURN

Appendix E: Make your own Load/Save Switch

How many times have you forgotten to remove an ‘“ear” jack when saving a program?
On the fifteenth occasion I did this, I decided it was high time I took steps to prevent it.
Here’s a simple but practical solution.

You need:

(a) 4 X% 3.5 mm jack plugs.

(b) 1 miniature 2-pole, 2-way slide switch.

(c) 2 metres of screened microphone cable (single core).
(d) An old cassette case.

(a), (b) and (c) are available in any electronics shop for something between 25p and 50p
each. (d) can be any convenient small plastic box.

Drill four holes in the narrow sides of the box large enough to allow the cable to pass
through. Make a hole in one of the large faces to accommodate the slide switch. (The
easiest way to make sure this hole is just the right size is to cut a piece of PVC adhesive
tape to act as a template. Now make the connections shown in Figure E1.

Cassette
case
0
¢ Rear view of
o o slide switch
Save
MicCC, |- { o mic

Figure E.1 Circuit diagram for LOAD/SAVE switch.

Figure E.2 Front view of switch.

161

162

Figure E.3 Back view of switch.

Finally, colour code the jack plugs with PVC adhesive tape to avoid confusion.

All this does is provide a break in the “‘ear’ lead so that on SAVE you use the switch in
the SAVE position (logical!), and slide it back to LOAD for LOAD or VERIFY. Note
that the “mic’’ lead isn’t actually connected to anything in the box, but it’s convenient to
thread it through the case simply to avoid losing it.

Other titles of interest
Easy Programming for the ZX Spectrum
Ian Stewart & Robin Jones

Computer Puzzles: For Spectrum and ZX81
Ian Stewart & Robin Jones

Games to Play on Your ZX Spectrum
Martin Wren-Hilton

PEEK, POKE, BYTE & RAM! Basic Programming for the ZX81
Ian Stewart & Robin Jones

‘Far and away the best book for ZX81 users new to computing’— Popular Computing
Weekly

‘... the best introduction to using this trail-blazing micro’—Computers in Schools

‘One of fifty books already published on the Sinclair micros, it is the best introduction
accessible to all computing novices’—Laboratory Equipment Digest

Machine Code and better Basic
Ian Stewart & Robin Jones

The ZX81 Add-On Book
Martin Wren-Hilton

Shiva Software

Spectrum Special 1

Ian Stewart & Robin Jones

A selection of 10 educational games and puzzles.

Available from March ’83
Spectrum Machine Code
Ian Stewart & Robin Jones

Spectrum in Education
Eric Deeson

Brainteasers for BASIC Computers
Gordon Lee

Shiva Software

Spectrum Specials 2 & 3
Ian Stewart & Robin Jones

163

Programming helps you get

This sequel to Easy
puter.

more out of your ZX Spectrum com

‘Enhance it:

o Cassette files

« Data management

« Crashproof graphics

o Flexible line-renumbering

Exploit it:
o User-defined functions
o System variables
o Attribute and display files
o Brand new character sets

Employ it:

o Star charts

» Code-breaking

« Psychology

o Statistics
tion of programs and appli-
nly 16K of memory, and sO
del of the Spectrum.

An original selec
cations needing ©
can be RUN on either mo!

ADEN YOUR SPECTRUM?

WHY NOT BRO

SHIVA
Sihva Pubishiig b
W Dinnded ISBNSONSDER IR T
: - URopiice > 25 ne
T Te

